

Blockchain Programming in C#
Authored by Nicolas Dorier

Contributor for NBitcoin,

The .NET Bitcoin Framework

Co-authored With Bill Strait

 Founder of Billd Labs

2

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Table	of	Contents	
I. Introduction ... 4

1. Foreword ... 4

2. Why Blockchain Programming and not Bitcoin Programming? .. 5

3. Why C#? ... 5

4. Pre-requisites .. 5

a. Skills ... 5

b. Tools .. 6

5. Crowdfunding this book .. 6

6. Complementary Reading ... 6

7. Diagrams .. 7

8. License: CC (ASA 3U) .. 8

9. Project Setup ... 9

II. Bitcoin transfer .. 10

1. Bitcoin Address .. 10

2. Transaction .. 15

3. Blockchain.. 19

4. “The Blockchain is more than just Bitcoin” ... 19

5. Spend your coin ... 20

6. Proof of ownership as an authentication method .. 24

III. Key Storage and Generation.. 25

1. Is it random enough?... 25

c. Key Derivation Function .. 26

2. Key Encryption ... 27

3. Key Generation .. 28

a. Like the good ol’ days .. 28

a. BIP38 (part 2) ... 28

b. HD Wallet (BIP 32) ... 30

c. Mnemonic Code for HD Keys (BIP39) .. 36

d. Dark Wallet .. 38

IV. Other types of ownership .. 42

1. P2PK[H] (Pay to Public Key [Hash]).. 42

2. P2WPKH (Pay to Witness Public Key Hash) ... 44

3. Multi Sig ... 45

4. P2SH (Pay To Script Hash) ... 49

5. P2WSH (Pay to Witness Script Hash) ... 51

3

Nicolas Dorier & Bill Strait

CC (ASA 3U)

6. P2W* over P2SH .. 52

7. Arbitrary .. 55

8. Using the TransactionBuilder .. 56

V. Other types of asset .. 61

1. Colored Coins... 61

2. Issuing an Asset ... 62

a. Objective.. 62

b. Issuance Coin ... 62

3. Transfer an Asset ... 65

4. Unit tests ... 68

5. Ricardian contracts .. 77

a. What is a Ricardian Contract ... 77

b. Ricardian Contract inside Open Asset ... 77

c. Check list .. 78

d. What is it for? .. 79

6. Liquid Democracy .. 79

a. Overview .. 79

b. Issuing voting power ... 79

c. Running a vote ... 81

d. Vote delegation ... 82

e. Voting .. 83

f. Alternative: Use of Ricardian Contract .. 83

7. Proof of Burn and Reputation ... 84

8. Proof of existence .. 86

VI. Security .. 87

1. The challenge of Bitcoin Development ... 87

2. How to prove a Coin exists in the Blockchain ... 87

3. How to prove a Colored Coin exists in the Blockchain .. 87

4. Breaking trust relationship with a third party API ... 87

5. Preventing Malleability attacks ... 87

6. Protecting your private keys ... 87

4

Nicolas Dorier & Bill Strait

CC (ASA 3U)

I. Introduction

1. Foreword

A passage in Fountain Head by Ayn Rand resonated with me.

GAIL WYNAND, THE POWERFUL PUPPET MASTER OF THE WORLD, AND HOARK HOWARD, THE PROTAGONIST BUILDING

ARCHITECT DISCUSSED TOGETHER. GAIL FINDS A STRANGE RELIEF WHEN HE IS WITH HOARK, NOT KNOWING WHERE IT

COMES FROM, HE QUESTIONED HIM.

WYNAND ASKED:

"HOWARD, HAVE YOU EVER BEEN IN LOVE?"

ROARK TURNED TO LOOK STRAIGHT AT HIM AND ANSWER QUICKLY:

"I STILL AM."

"BUT WHEN YOU WALK THROUGH A BUILDING, WHAT YOU FEEL IS GREATER THAN THAT?"

"MUCH GREATER, GAIL"

"I WAS THINKING OF PEOPLE WHO SAY THAT HAPPINESS IS IMPOSSIBLE ON EARTH. LOOK HOW HARD THEY ALL TRY TO

FIND SOMEONE JOY IN LIFE. LOOK HOW THEY STRUGGLE FOR IT. WHY SHOULD ANY LIVING CREATURE EXIST IN PAIN? BY

WHAT CONCEIVABLE RIGHT CAN ANYONE DEMAND THAT A HUMAN BEING EXIST FOR ANYTHING BUT HIS OWN JOY?

EVERY ONE OF THEM WANTS IT. EVERY PART OF HIM WANTS IT. BUT THEY NEVER FIND IT. I WONDER WHY. THEY WHINE

AND SAY THEY DON'T UNDERSTAND THE MEANING OF LIFE. THERE'S A PARTICULAR KIND OF PEOPLE THAT I DESPISE.

THOSE WHO SEEK SOME SORT OF A HIGHER PURPOSE OR ‘UNIVERSAL GOAL,' WHO DON'T KNOW WHAT TO LIVE FOR,

WHO MOAN THAT THEY MUST ‘FIND THEMSELVES.’ YOU HEAR IT ALL AROUND US. THAT SEEMS TO BE THE OFFICIAL

BROMIDE OF OUR CENTURY. EVERY BOOK YOU OPEN. EVERY DROOLING SELF-CONFESSION. IT SEEMS TO BE THE NOBLE

THING TO CONFESS. I'D THINK IT WOULD BE THE MOST SHAMEFUL ONE."

"LOOK, GAIL". ROARK GOT UP, REACHED OUT, TORE A THICK BRANCH OFF A TREE, HELD IT IN BOTH HANDS, ONE FIST

CLOSED AT EACH END; THEN, HIS WRISTS AND KNUCKLES TENSED AGAINST THE RESISTANCE, HE BENT THE BRANCH

SLOWLY INTO AN ARC. "NOW I CAN MAKE WHAT I WANT OF IT: A BOW, A SPEAR, A CANE, A RAILING. THAT'S THE

MEANING OF LIFE."

"YOUR STRENGTH?”

"YOUR WORK." HE TOSSED THE BRANCH ASIDE. "THE MATERIAL THE EARTH OFFERS YOU AND WHAT YOU MAKE OF IT..."

I think the Blockchain is like the tree branch. For outsiders, it feels like a boring and useless collection
of bits. For programmers and entrepreneurs, it is a marvelous raw material that can be shaped with
our imagination. We give it meaning and purpose.

Just as you need to know about wood to make a bow, spear or cane from a branch, you need to learn
about programming to shape the Blockchain. My hope is that you will discover how much your skill
and intelligence can shape that useless collection of bits.

Let me warn you: learning about the Blockchain is like taking the red pill from The Matrix. You may find
yourself ready to quit your job to work on it full time.

This book will take you from basic to advanced use of the Blockchain. It will not teach you how to use
an API (such as the RPC API provided with Bitcoin Core), but it will teach you how to make such an
API.

FACT: Satoshi Nakamoto once described Bitcoin as “boring grey in colour.”

5

Nicolas Dorier & Bill Strait

CC (ASA 3U)

While programming to an API can assist in getting an application up quickly, the developer is limited to
innovations that can take place against the API. By fully understanding the Blockchain, the developer
is empowered to unleash its full potential.

2. Why Blockchain Programming and not Bitcoin Programming?

The Blockchain is to gold what Bitcoin is to jewelry.

We did not compare Bitcoin to a gold coin, but rather with a jewelry. That’s because gold’s first killer

app was jewelry. Coins came later.

Do not be fooled into thinking that Bitcoin is flawed while the Blockchain is valuable. If gold is

valuable, would you throw away a gold necklace? The Blockchain is built on and thrives because of

bitcoin. Any increase in value of the Blockchain will increase the amount of Bitcoin that is spent to

use it, which will increase its demand.

Whether or not your app will use the “Bitcoin as a currency” feature is your own decision.

Blockchain is the raw material. Bitcoin is the fuel. Bitcoin as a currency is a feature that emerges

every time someone thinks this fuel is also a good medium of exchange. You can do a lot more with

the Blockchain than exchange value. You don’t even have to believe in the currency. We will show

you how to use Bitcoin as a currency in this book, but that’s not all!

3. Why C#?

The .NET framework is popular in corporate environments. We also believe this is the perfect tool for

startups and hobbyists.

• .NET can create portable code that functions across IOS, Android, Windows tablets/phone,

desktops, servers and embedded devices.

• Everything from the compiler to the core runtime is open source.

• The BizSpark program allows any startup to get all Microsoft tools, including $150/month of

Azure service, for free.

• Visual Studio Community 2013 is a professional grade IDE that you can use freely as

hobbyist.

• C# is closely related to Java and C++. As such, it can be easily read by developers who already

know C syntax.

• Nicolas Dorier, one of the authors of this book, created the most popular Bitcoin Framework

for .NET, called NBitcoin. You can find it here: https://github.com/NicolasDorier/NBitcoin

The authors of this book have over 15 years combined experience with C#. It is our go-to language

for any project for fun or profit.

Fact: We have not been paid by Microsoft. It’s not too late to change that.

4. Pre-requisites

a. Skills

• You need to be comfortable with object oriented as well as functional programming.

6

Nicolas Dorier & Bill Strait

CC (ASA 3U)

• A basic grasp of C# is helpful, but we feel the code will be legible to Java and other C-based

languages.

• No mathematic knowledge is required. We will not cover cryptography beyond the bare

minimum that you need to know to make a secure service.

• You don’t need to have deep knowledge of Bitcoin. We do recommend reading Mastering

Bitcoin by Andreas Antonopoulos for extra credit.

b. Tools

• Visual Studio 2013 - You can get it for free by searching for “Visual studio 2013 community”

on Google Bing.

• Bitcoin Core - You should have this synchronized before beginning.

Fact: You can ask Microsoft’s Cortana or Google Now for the exchange rate of

Bitcoin.

5. Crowdfunding this book

If we want to continue to make great stuff for you we need to buy pizza, coffee and sushi. It is our

responsibility to get enough coins for that. Also, we’re too lazy to keep writing a whole book without

hearing your feedback.

So we will start the following experiment that we hope you’ll find it interesting. Maybe one day you’ll

flesh it out into a full business model.

We created this (don’t worry, we’ll see what each of these lines mean later)

Address: 1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB

Signature:

H1jiXPzun3rXi0N9v9R5fAWrfEae9WPmlL5DJBj1eTStSvpKdRR8Io6/uT9tGH/3OnzG6ym5yytuWoA9ahk

C3dQ=

Message: Nicolas Dorier Book Funding Address

Now we’ll write the book. When we get hungry, we’ll pause and ask for help funding the next section

of the book. You will send the money by completing a challenge in code, simply sending money with

a wallet won’t count. Those who contribute will be able to access the next section by authenticating

with their bitcoin address. There will not be any DRM. If you got the book without paying, it would be

very kind of you to send payments as instructed throughout the book.

We’ll get into the specifics of unlocking the next section as we go along. Don’t expect it to be easy,

you’ll have to learn how to do it through code!

You can find out more on http://blockchainprogramming.azurewebsites.net/

6. Complementary Reading

Here is some literature that you can use to complete this book

• Mastering Bitcoin of Andreas M. Antonopoulos

7

Nicolas Dorier & Bill Strait

CC (ASA 3U)

• Nicolas Dorier’s articles on CodeProject

(http://www.codeproject.com/Members/NicolasDorier)

• The Developer’s Reference Guide at https://bitcoin.org/en/developer-guide

7. Diagrams

Most of the diagrams will have the same shape, they must be read by interpreting inward arrows like

components to create the target:

For example, the following diagram should be read as “Key + Password = EncryptedKey.

EncryptedKey + Password = Key.”

Code is nice, but sometimes a picture is worth a thousand words. Don’t worry, we’ll also write the

code. ☺)

8

Nicolas Dorier & Bill Strait

CC (ASA 3U)

8. License: CC (ASA 3U)

As you have seen in the “Crowdfunding this book” part, we will distribute this book to owner of

Bitcoin addresses that funded it.

Once in possession of this book, you are free to share and adapt, as specified in the Attribution-Share

Alike 3.0 Unported (CC BY-SA 3.0).

We would consider it a courtesy if anyone who received this book for free would send along a small

tip when prompted.

As cryptocurrency addicts might say: Proof of Stake and Proof of Work are the best expression of

affection, everything else is Fiat. ☺

9

Nicolas Dorier & Bill Strait

CC (ASA 3U)

9. Project Setup

Before we begin with the instruction, we should describe how we expect your project to be set up.

1. Open Visual Studio and create a new Console Application. Name it

“ProgrammingBlockchain.”

2. Right click on “References” in Solution Explorer and select “Manage NuGet Packages…”

3. Search for “NBitcoin” and install it. Note: The information provided in the image is for

reference only. Actual version and publication dates may change as you are reading this.

4. Right click on “ProgrammingBlockchain” in the Solution Explorer and select “Add” then “New

Folder.” Name the folder “Chapters.”

5. Right click “Chapters” and select “Add” then “New Class.” Name this class “Chapter1.” You

will do this for every new chapter in the book.

6. Open “Program.cs” and add the following code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using System.Text;

using ProgrammingBlockchain.Chapters;

namespace ProgrammingBlockchain

{

 class Program

 {

 static void Main(string[] args)

 {

 //Select the chapter here.

 var chapter = new Chapter1();

 //call the lesson here.

 chapter.Lesson4();

 //this will hold the window open for you to read the output.

 Console.WriteLine("\n\n\nPress enter to continue.");

 Console.ReadLine();

 }

 }
}

7. Note “using ProgrammingBlockchain.Chapters;” was added to the using block.

8. At this point Visual Studio is complaining that “chapter.Lesson4();” does not exist! Keep

reading and we’ll create it.

10

Nicolas Dorier & Bill Strait

CC (ASA 3U)

II. Bitcoin	transfer	

1. Bitcoin Address

You know that your Bitcoin Address is what you share to the world to get paid. You probably know

that your wallet software uses a private key to spend the money you received on this address.

A Bitcoin Address is made up of a Base58check encoded combination of your public key’s hash and

some information about the network the address is for. The Base58Check encoding has some neat

features, such as checksums to prevent typos and a lack of ambiguous characters such as “0” and

“O.”

Fact: TestNet is a bitcoin network for development purposes, the bitcoin on this

network are worth nothing. MainNet is the bitcoin network everybody knows.

You might not know that as far as the Blockchain is concerned, there is no such thing as a Bitcoin

Address. Internally, the Bitcoin protocol identifies the recipient of Bitcoin by a ScriptPubKey. A

ScriptPubKey is a short script that explains what conditions must be met to claim ownership of

bitcoins. We will go into the types of instructions that can be given in a ScriptPubKey as we move

through the lessons of this book. The ScriptPubKey may contain the hashed public key(s) permitted

to spend the bitcoin.

Fact: Practicing Bitcoin Programming on MainNet makes mistakes more

memorable.

This diagram illustrates the relationships between the public key, private key, bitcoin address, and

the ScriptPubKey.

11

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Now we can show you the relationship in code. Open Chapter1.cs, add “using NBitcoin;” to the top

and then make the following method:

public void Lesson1()
{
 Key key = new Key(); //generates a new private key.
 PubKey pubKey = key.PubKey; //gets the matching public key.
 Console.WriteLine("Public Key: {0}", pubKey);
 KeyId hash = pubKey.Hash; //gets a hash of the public key.
 Console.WriteLine("Hashed public key: {0}", hash);
 BitcoinPubKeyAddress address = pubKey.GetAddress(Network.Main); //retrieves the

bitcoin address.
 Console.WriteLine("Address: {0}", address);
 Script scriptPubKeyFromAddress = address.ScriptPubKey;
 Console.WriteLine("ScriptPubKey from address: {0}", scriptPubKeyFromAddress);
 Script scriptPubKeyFromHash = hash.ScriptPubKey;
 Console.WriteLine("ScriptPubKey from hash: {0}", scriptPubKeyFromHash);
}

12

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Public Key: 02fc2e5ab52c89f3bfbbbd702254ab9fc7134173e5682b69bf740c3d0bf6bfc4ce

Hashed public key: 1b2da6ee52ac5cd5e96d2964f12a0241851f8d2a

Address: 13Uhw9BmdaXbnjDXiEd4HU4yesj7kKjxCo

ScriptPubKey from address: OP_DUP OP_HASH160 1b2da6ee52ac5cd5e96d2964f12a0241851f8d2a

OP_EQUALVERIFY OP_CHECKSIG

ScriptPubKey from hash: OP_DUP OP_HASH160 1b2da6ee52ac5cd5e96d2964f12a0241851f8d2a

OP_EQUALVERIFY OP_CHECKSIG

Press F5 and examine the output. You just learned how to create a private key, the corresponding

public key, the public key’s hash, the address, and the scriptPubKey.

We will not go into the details yet, but note that the ScriptPubKey appears to have nothing to do

with the BitcoinAddress, but it does show the hash of the public key. Notice how we were able to

generate the scriptPubKey from the Bitcoin Address? This is a step that all bitcoin clients do to

translate the “human friendly” Bitcoin Address to the Blockchain readable address.

Bitcoin Addresses are composed of a network identifier and the hash of a public key. Knowing this, it

is possible to generate a bitcoin address from the scriptPubKey and the network identifier as the

following code demonstrates.

public void Lesson2()

{

 Script scriptPubKey = new Script("OP_DUP OP_HASH160

1b2da6ee52ac5cd5e96d2964f12a0241851f8d2a OP_EQUALVERIFY OP_CHECKSIG");

 BitcoinAddress address = scriptPubKey.GetDestinationAddress(Network.Main);

 Console.WriteLine("Bitcoin Address: {0}", address);

}

Bitcoin Address: 13Uhw9BmdaXbnjDXiEd4HU4yesj7kKjxCo

It is also possible to retrieve the hash from the scriptPubKey and generate a Bitcoin Address from it

as we showed in Lesson1().

public void Lesson3()
{
 Script scriptPubKey = new Script("OP_DUP OP_HASH160

1b2da6ee52ac5cd5e96d2964f12a0241851f8d2a OP_EQUALVERIFY OP_CHECKSIG");
 KeyId hash = (KeyId)scriptPubKey.GetDestination();
 Console.WriteLine("Public Key Hash: {0}", hash);
 BitcoinAddress address = new BitcoinPubKeyAddress (hash, Network.Main);
 Console.WriteLine("Bitcoin Address: {0}", address);
}

13

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Public Key Hash: 1b2da6ee52ac5cd5e96d2964f12a0241851f8d2a

Bitcoin Address: 13Uhw9BmdaXbnjDXiEd4HU4yesj7kKjxCo

Fact: The hash of the public key is generated by performing a SHA256 hash on the

public key, and then performing a RIPEMD160 hash on the result, with Big Endian

notation. The function could look like this: RIPEMD160(SHA256(pubkey))

So now you understand the relationship between a Private Key, a Public Key, a Public Key Hash, a

Bitcoin Address and a scriptPubKey.

Private keys are often represented in Base58Check called a Bitcoin Secret (also known as Wallet

Import Format or simply WIF), like Bitcoin Addresses.

For the rest of the book you will use an address that you have generated for yourself.

Note that it is easy to go from Bitcoin Secret to Private Key. It is important to remember that it is

impossible to go from a Bitcoin Address to Public Key because the Bitcoin Address contains a hash of

the Public Key, not the Public Key itself.

14

Nicolas Dorier & Bill Strait

CC (ASA 3U)

public void Lesson4()

{

 Key key = new Key();

 BitcoinSecret secret = key.GetBitcoinSecret(Network.Main);

 Console.WriteLine("Bitcoin Secret: {0}", secret);

}

Bitcoin Secret: KyVVPaNYFWgSCwkvhMG3TruG1rUQ5o7J3fX7k8w7EepQuUQACfwE

Copy Bitcoin Secret you are presented, and add the following code to your main method in

Program.cs, substituting the secret you were given for the one we have entered.

BitcoinSecret paymentSecret = new

BitcoinSecret("KyVVPaNYFWgSCwkvhMG3TruG1rUQ5o7J3fX7k8w7EepQuUQACfwE");

Exercise: Note your own generated private key that you will use in the rest of this book along with its

address.

I will store my private key in the variable BitcoinSecret paymentSecret for the rest of this book.

Exercise: Get the Bitcoin Address of the paymentSecret, store in in paymentAddress, and send some

money on it from Bitcoin Core. Send something like 0.01 BTC, you can increase when if you feel more

confident. ;)

15

Nicolas Dorier & Bill Strait

CC (ASA 3U)

2. Transaction

Before we begin, remember to create a new chapter class.

A transaction is a transfer of bitcoin. A transaction may have no recipient, or it may have several. The

same can be said for senders! On the Blockchain, the sender and recipient are always abstracted with

a scriptPubKey, as we demonstrated in Chapter 10. We will move forward under the assumption that

you’ve completed Lesson 4 and the associated exercises. If you have not completed the exercises,

please send money to the address that you generated before continuing.

If you used Bitcoin Core your transactions tab will show the transaction, like this:

For now we’re interested in the Transaction ID. In this case, it’s

f13dc48fb035bbf0a6e989a26b3ecb57b84f85e0836e777d6edf60d87a4a2d94

The TransactionId is defined by SHA256(SHA256(txbytes))

Do NOT use the TransactionId to handle unconfirmed transactions. The

TransactionId can be manipulated before it is confirmed. This is known as

“Transaction Malleability.”

You can review the transaction on a website like Blockchain.info, but as a developer you will probably

want a service that is easier to query and parse. At the time of this writing, we find Blockr.io to be a

good service for the task.

If you go to

http://btc.blockr.io/api/v1/tx/raw/f13dc48fb035bbf0a6e989a26b3ecb57b84f85e0836e777d6edf60d

87a4a2d94 you will see the raw bytes of your transaction.

16

Nicolas Dorier & Bill Strait

CC (ASA 3U)

NBitcoin queries blockr and parses the information for you so you don’t have to do it manually.

public void Lesson1()

{

 var blockr = new BlockrTransactionRepository();

 Transaction transaction =

blockr.Get("4ebf7f7ca0a5dafd10b9bd74d8cb93a6eb0831bcb637fec8e8aabf842f1c2688");

 Console.WriteLine(transaction.ToString());
}

17

Nicolas Dorier & Bill Strait

CC (ASA 3U)

 "hash": "4ebf7f7ca0a5dafd10b9bd74d8cb93a6eb0831bcb637fec8e8aabf842f1c2688",

 "ver": 1,

 "vin_sz": 1,

 "vout_sz": 2,

 "lock_time": 0,

 "size": 225,

 "in": [

 {

 "prev_out": {

 "hash": "bf7d91ac70917f98b497927e1b07267507652b206df14ecdba2e9390b9bffc65",

 "n": 0

 },

 "scriptSig":

"3044022069b6b0f1a8d453bdb89e3ad475232b8e01d2851e7b53acab3f830f40e80b3b5102203c049

867975360020293c735d48b4a2dda003aa781c1d8ccd2c7af290dcd11de01

02e3538427350039e67ea99e935cefb740badf3d09ebc301b0bc9d1bb0301a3417"

 }

],

 "out": [

 {

 "value": "0.08990000",

 "scriptPubKey": "OP_DUP OP_HASH160 5b1d720daf0e95e37d0eaedd282b6ed9a40bab71

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.01000000",

 "scriptPubKey": "OP_DUP OP_HASH160 71049fd47ba2107db70d53b127cae4ff0a37b4ab

OP_EQUALVERIFY OP_CHECKSIG"

 }

]

The relevant parts for now are in and out. You can see that in out 0.0899 Bitcoin has been sent to a

scriptPubKey, and 0.01 has been sent to another. (Exercise: Verify the public key hash in this

ScriptPubKey is the same as the one associated with your paymentAddress)

If you look at the in you will notice a prev_out (previous out) is referenced. Each in show you which

previous out has been spent in order to fund this transaction. The terms TxOut and Output are

synonymous with out.

In summary, the TxOut represents an amount of bitcoin and a ScriptPubKey. (Recipient)

18

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Every out has an address defined by the transaction ID and index called the Outpoint. For example,

the Outpoint of the out with 0.01 BTC in my transaction is

(71049fd47ba2107db70d53b127cae4ff0a37b4ab, 1).

Now let’s take a look at the in (aka TxIn, Inputs) of the transaction:

The TxIn is composed of the Outpoint of the prev_out being spent and of a ScriptSig also called

“Proof of Ownership.” In my case, the prev_out Outpoint is

(7def8a69a7a2c14948f3c4b9033b7b30f230308b, 0)

By replacing the transaction ID in the code we wrote for Lesson1 we can review the information

associated with that transaction. We could continue to trace the transaction IDs back in this manner

until we reach the bitcoins’ coinbase, the block where they were mined.

In our example, the prev_out was for a total of .1 BTC. In this transaction .0899 BTC and .01 BTC were

sent. That means 0.0001 BTC (or 0.1 - (0.0899+0.01)) is not accounted for! The difference between

the inputs and outputs are called Transaction Fees or Miner’s Fees. This is the money that the miner

collects for including a given transaction in a block.

19

Nicolas Dorier & Bill Strait

CC (ASA 3U)

3. Blockchain

You might have noticed that while we proved ownership of the spent TxOut, and that we have not

proven the TxOut actually exists. This is where the main function of the Blockchain shines:

The Blockchain is the database of all transactions that have happened since the the first Bitcoin

transaction, known as the Genesis block. The Blockchain duplicates all around the world. If you use

Bitcoin Core, you have the whole Blockchain on your computer. Once a transaction appears on the

Blockchain, it is impossible to deny that it has happened.

Miners are entities whose only goal is to insert a transaction in to The Blockchain. When a new set of

transactions is added, it is broadcast across the network as a block. Other nodes on the network

confirm the new block obeys the rules set forth in the Bitcoin protocol. The creation of a block is very

costly. If a miner tries to include a use an invalid transaction the other nodes will not recognize the

block, and the miner loses the investment spent on creating the block.

Once a miner manages to submit a valid block all transactions inside are considered Confirmed.

When this happens all miners must discard their current work and begin with new transactions.

When a block is confirmed it is written into the Blockchain, and the likelihood of it being undone

decreases dramatically with every subsequent block.

For the first time in history we have a database which can’t easily be rewritten, eliminates the need

for trust, resists censorship, and is widely distributed. Comparing the Blockchain to a ledger is only

relevant if we consider Bitcoin as a currency.

The Blockchain is a database, and you give meaning to its data. As you will soon discover, a bitcoin

transaction can bear more information than just bitcoin transfers. A bitcoin transaction is a row in a

database that can never be erased.

As a user, you can verify that a specific transaction exists in the Blockchain in two different ways:

• Check the entire Blockchain, which at the time of this writing is several gigabytes in size.

• Ask for a partial merkel tree, which are a few kilobytes. We will talk about merkel trees more

as it relates to Simple Payment Verification.

4. “The Blockchain is more than just Bitcoin”

The interesting thing is that this same sentence is used by two different groups of people.

It is as used by Bitcoin-As-A-Currency believers as argument for their bullish prediction of Bitcoin’s

value. It is also used by those who don’t believe in the success of the currency, as an attempt to

explain why Bitcoin has so much interest.

But there is one thing we all agree on: an immutable database that can’t be censored, tampered

with, or erased that is duplicated all around the world will have tremendous impact on other

industries.

Notaries who record facts that can be used in court could store their documents permanently in The

Blockchain. Audits can become automatic and provable when assets and ownership are stored and

transferred on The Blockchain. All Money Transmitters can prove their solvency publicly. Automatic

trading scripts can trade between themselves without human intervention or authorization of a

central authority.

20

Nicolas Dorier & Bill Strait

CC (ASA 3U)

In the rest of this book we will explore the fundamentals required to enable all of these technologies

and more. It all starts with spending a bitcoin.

5. Spend your coin

So now that you know what a bitcoin address, a ScriptPubKey, a private key, and a miner are you’ll

make your first transaction by hand. Create a new class called Chapter14 and a method called

Lesson1. As you proceed through this chapter you will add code line by line as it is presented to build

a method that will leave feedback for the book in a Twitter style message.

Let’s start by looking at the transaction that that contains the TxOut that you want to spend as we

did in Chapter 11.

var blockr = new BlockrTransactionRepository();
Transaction fundingTransaction =

blockr.Get("0b948b0674a3dbd229b2a0b436e0fce8aa84e6de28b088c610d110c2bf54acb4");

In our case, we want to spend the second output:

 "out": [

 {

 "value": "0.08990000",

 "scriptPubKey": "OP_DUP OP_HASH160 5b1d720daf0e95e37d0eaedd282b6ed9a40bab71

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.01000000",

 "scriptPubKey": "OP_DUP OP_HASH160 71049fd47ba2107db70d53b127cae4ff0a37b4ab

OP_EQUALVERIFY OP_CHECKSIG"

 }

]

For the payment you will need to reference this output in the transaction. You create a transaction as

follows:

Transaction payment = new Transaction();

payment.Inputs.Add(new TxIn()

{

 PrevOut = new OutPoint(fundingTransaction.GetHash(), 1)

});

Now let’s take care about the Outputs. We as that you send 0.004 BTC, and since you spent 0.01 BTC,

you want 0.006 BTC back. You will also give some fees to the miners to incentivize them to add this

transaction into their next block. So you will take back 0.0059 BTC.

21

Nicolas Dorier & Bill Strait

CC (ASA 3U)

The book’s donation address is: 1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB

var programmingBlockchain =

 BitcoinAddress.Create("1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB");
payment.Outputs.Add(new TxOut()
{
 Value = Money.Coins(0.004m),
 ScriptPubKey = programmingBlockchain.ScriptPubKey

});

payment.Outputs.Add(new TxOut()
{

 Value = Money.Coins(0.0059m),
 ScriptPubKey = paymentAddress.ScriptPubKey
});

Now add your feedback! This must be less than 40 bytes, or it will crash the application.

//Feedback !

var message = "Thanks ! :)";

var bytes = Encoding.UTF8.GetBytes(message);

payment.Outputs.Add(new TxOut()

{

 Value = Money.Zero,

 ScriptPubKey = TxNullDataTemplate.Instance.GenerateScriptPubKey(bytes)

});

Console.WriteLine(payment);

22

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 "hash": "258ed68ac5a813fe95a6366d94701314f59af1446dda2360cf6f8e505e3fd1b6",

 "ver": 1,

 "vin_sz": 1,

 "vout_sz": 3,

 "lock_time": 0,

 "size": 166,

 "in": [

 {

 "prev_out": {

 "hash": "4ebf7f7ca0a5dafd10b9bd74d8cb93a6eb0831bcb637fec8e8aabf842f1c2688",

 "n": 1

 },

 "scriptSig": ""

 }

],

 "out": [

 {

 "value": "0.00400000",

 "scriptPubKey": "OP_DUP OP_HASH160 c81e8e7b7ffca043b088a992795b15887c961592

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.00590000",

 "scriptPubKey": "OP_DUP OP_HASH160 71049fd47ba2107db70d53b127cae4ff0a37b4ab

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.00000000",

 "scriptPubKey": "OP_RETURN

42696c6c20537472616974206973207570646174696e672073637265656e73686f74732e"

 }

]

}

Now that we have created the transaction, we must sign it. In other words, you will have to prove

that you own the TxOut that you referenced in the input.

23

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Signing can be complicated. Refer to

https://en.bitcoin.it/w/images/en/7/70/Bitcoin_OpCheckSig_InDetail.png for details. But we’ll make

it simple.

First insert the scriptPubKey in the scriptSig.

Since the scriptPubKey is nothing but paymentAddress.ScriptPubKey this is simple.

Then you need to give your private key for signing.

payment.Inputs[0].ScriptSig = paymentAddress.ScriptPubKey;

//also OK :

//payment.Inputs[0].ScriptSig = fundingTransaction.Outputs[1].ScriptPubKey;

payment.Sign(paymentSecret, false);

"in": [

 {

 "prev_out": {

 "hash": "4ebf7f7ca0a5dafd10b9bd74d8cb93a6eb0831bcb637fec8e8aabf842f1c2688",

 "n": 1

 },

 "scriptSig":

"3045022100d4d8d4e1e3205399e0ab899e95bd6c7b65a094c9b86c4b020872428864a5c63502206f9

d0b3084e4a7895de520069a939347909471ca118a43723fd8734cd8e8bcac01

03e0b917b43bb877ccb68c73c82165db6d01174f00972626c5bea62e64d57dea1a"

 }

]

Congratulations, you have signed your first transaction! Your transaction is ready to roll! All that is

left is to propagate it to the network so the miners can see it. Be sure to have Bitcoin Core running

and then:

using (var node = Node.ConnectToLocal(Network.Main)) //Connect to the node

{

 node.VersionHandshake(); //Say hello

 //Advertize your transaction (send just the hash)

 node.SendMessage(new InvPayload(InventoryType.MSG_TX, payment.GetHash()));

 //Send it

 node.SendMessage(new TxPayload(payment));

 Thread.Sleep(500); //Wait a bit

}

The using code block will take care of closing the connection to the node. That it!

You can also connect directly to the Bitcoin network,

However I advise you to connect to your own trusted node (faster and easier)

24

Nicolas Dorier & Bill Strait

CC (ASA 3U)

6. Proof of ownership as an authentication method

When I will release the next chapters, I will authenticate you with the key you used to pay me.

Do you remember when I said:

Address: 1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB

Signature:

H1jiXPzun3rXi0N9v9R5fAWrfEae9WPmlL5DJBj1eTStSvpKdRR8Io6/uT9tGH/3OnzG6ym5yytuWoA9ahk

C3dQ=

Message: Nicolas Dorier Book Funding Address

This constitute proof that I own the private key of the book.

You can verify that this is true with the following code.

var address = new BitcoinPubKeyAddress("1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB");
var msg = "Nicolas Dorier Book Funding Address";
var sig =

"H1jiXPzun3rXi0N9v9R5fAWrfEae9WPmlL5DJBj1eTStSvpKdRR8Io6/uT9tGH/3OnzG6ym5yytuWoA9a

hkC3dQ=";
Console.WriteLine(address.VerifyMessage(msg, sig));

True

And this is what I will use to authenticate you.

So if I give you the challenge:

Message: “Prove me you are 1LUtd66PcpPx64GERqufPygYEWBQR2PUN6”

You can prove it with your private key in the following way

msg = "Prove me you are 1LUtd66PcpPx64GERqufPygYEWBQR2PUN6";

sig = paymentSecret.PrivateKey.SignMessage(msg);

Console.WriteLine(paymentSecret.GetAddress().VerifyMessage(msg, sig));

True

This is how you’ll be prompted to prove your identity on

http://blockchainprogramming.azurewebsites.net/

25

Nicolas Dorier & Bill Strait

CC (ASA 3U)

III. Key	Storage	and	Generation	

1. Is it random enough?

When you call new Key(), under the hood, you are using a PRNG (Pseudo-Random-Number-

Generator) to generate your private key. On windows, it uses the RNGCryptoServiceProvider of

Windows.

On Android, I use the SecureRandom, and in fact, you can use your own implementation with

RandomUtils.Random.

On IOS, I have not implemented it and you need to create your IRandom implementation.

For a computer, being random is hard. But the biggest issue is that it is impossible to know if a serie

of number is really random.

If a malware modifies your PRNG (and so, can predict the numbers you will generate), you won’t see

it until it is too late.

It means that a cross platform and naïve implementation of PRNG (like using computer’s clock

combined with CPU speed) is dangerous. But you won’t see it until it is too late.

For performance reason, most PRNG works the same way: a random number, called Seed, is chosen,

then a predictable formulae generates the next numbers each time you ask for it.

The amount of randomness of the seed is defined by a measure we call Entropy, but the amount of

Entropy also depends on the observer.

Let’s say you generate a seed from your clock time.

And let’s imagine that your clock has 1ms of resolution. (reality is more ~15ms)

If your attacker knows that you generated the key last week, then your seed has

1000 * 60 * 60 * 24 * 7 = 604800000 possibilities

For such attacker, the entropy is LOG(604800000;2) = 29.17 bits.

And enumerating such number on my home computer took less than 2 seconds…

We call such enumeration “brute forcing”.

However let’s say, you use the clock time + the process id for generating the seed.

Let’s imagine that there are 1024 different process ids.

So now, the attacker needs to enumerate 604800000 * 1024 possibilities, which take around 2000

seconds.

Now, let’s add the time when I turned on my computer, assuming the attacker knows I turned it on

today, it adds 86400000 possibilities

Now the attacker needs to enumerate 604800000 * 1024 * 86400000 = 5,35088E+19 possibilities

However, keep in mind that if the attacker infiltrate my computer, he can get this last piece of info,

and bring down the number of possibilities, reducing entropy.

Entropy is measured by LOG(possibilities;2) and so LOG(5,35088E+19; 2) = 65 bits.

26

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Is it enough? Probably. Assuming your attacker does not know more information about the realm of

possibilities.

But since the hash of a public key is 20 bytes = 160 bits, it is smaller than the total universe of the

addresses. You might do better.

Note: Adding entropy is linearly harder, cracking entropy is exponentially harder

An interesting way of generating entropy quickly is by asking human intervention. (moving the

mouse)

If you don’t trust completely the platform PRNG (which is not so paranoic), you can add entropy to

the PRNG output that NBitcoin is using.

RandomUtils.AddEntropy("hello");

RandomUtils.AddEntropy(new byte[] { 1, 2, 3 });

var nsaProofKey = new Key();

What NBitcoin does when you call AddEntropy(data) is:

additionalEntropy = SHA(SHA(data) ^ additionalEntropy)

Then when you generate a new number:

result = SHA(PRNG() ^ additionalEntropy)

c. Key Derivation Function

However, the most important is not the number of possibilities. It is the time that an attacker would

need to successfully break your key. That’s where KDF enters the game.

KDF, or Key Derivation Function is a way to have a stronger key, even if your entropy is low.

Imagine that you want to generate a seed, and the attacker knows that there are 10.000.000

possibilities.

Such a seed would be normally cracked pretty easily.

But what if you could make the enumeration slower?

A KDF is a hash function that waste computing resources on purpose.

Here is an example:

var derived = SCrypt.BitcoinComputeDerivedKey("hello", new byte[] { 1, 2, 3 });

RandomUtils.AddEntropy(derived);

Even if your attacker knows that your source of entropy is 5 letters, he will need to run Scrypt to

check a possibility, which take 5 seconds on my computer.

Bottom line of the story: There is nothing paranoid into distrusting a PRNG, you can mitigate an

attack by both adding entropy and also using a KDF.

Keep in mind that an attacker can decrease entropy by gathering information about you or your

system.

If you use the timestamp as entropy source, then he can decrease the entropy by knowing

you generated the key last week, and that you only use your computer between 9am and 6pm.

27

Nicolas Dorier & Bill Strait

CC (ASA 3U)

2. Key Encryption

In the previous part I talked quickly about a special KDF called Scrypt. As I said, the goal of a KDF is to

make brute force costly.

So it should be no surprise for you that a standard already exist for encrypting your private key with a

password using a KDF. This is BIP38.

var key = new Key();

BitcoinSecret wif = key.GetBitcoinSecret(Network.Main);

Console.WriteLine(wif);

BitcoinEncryptedSecret encrypted = wif.Encrypt("secret");

Console.WriteLine(encrypted);

wif = encrypted.GetSecret("secret");

Console.WriteLine(wif);

L136rry4qogVuBBdcD2WkfsGP5SrdCxDxpcPMx4YtwYErq9mbG7W

6PYQCwhP9uPh7ESZsV8sUidBsroZdXuaJmzfYTS6MkEMRdT3pRJbfvu7Ts

L136rry4qogVuBBdcD2WkfsGP5SrdCxDxpcPMx4YtwYErq9mbG7W

Such encryption is used in two different cases:

• You don’t trust your storage provider (they can get hacked)

• You are storing the key on the behalf of somebody else (and you don’t want to know his key)

If you own your storage, then encrypting at the database level might be enough.

Be careful if your server takes care of decrypting the key, an attacker might attempt to DDOS your

server by forcing it to decrypt lots of keys.

Delegate decryption to the ultimate user when you can.

28

Nicolas Dorier & Bill Strait

CC (ASA 3U)

3. Key Generation

a. Like the good ol’ days

First, why generating several keys?

The main reason is privacy. Since you can see the balance of all addresses, it is better to use a new

address for each transaction.

However, in practice, you can also generate keys for each contact. Because this make a simple way to

identify your payer without leaking too much privacy.

You can generate key, like you did from the beginning:

var key = new Key();

However, you have two problems with that:

• All backup of your wallet that you have will become outdated when you generate a new key.

• You can’t delegate the address creation process to an untrusted peer

If you are developing a web wallet and generate key on behalf of your users, and one user get hack,

he will immediately start suspecting you.

a. BIP38 (part 2)

We already saw BIP38 for encrypting a key, however this BIP is in reality two ideas in one document.

The second part of the BIP, show how you can delegate Key and Addresss creation to an untrusted

peer. It will fix one of our concern.

The idea is to generate a PassphraseCode to the key generator. With this PassphraseCode, he will be

able to generate Encrypted keys on your behalf, without knowing your password, nor any private

key.

This PassphraseCode can be given to your key generator in WIF format.

Tip: In NBitcoin, all types prefixed by “Bitcoin” are Base58 (WIF) data

So, as a user that want to delegate key creation, first you will create the PassphraseCode.

BitcoinPassphraseCode passphraseCode = new BitcoinPassphraseCode("my secret",

Network.Main, null);

29

Nicolas Dorier & Bill Strait

CC (ASA 3U)

You then give this passphraseCode to your third party key generator.

The key generator will then generate new encrypted keys for you.

EncryptedKeyResult encryptedKey1 = passphraseCode.GenerateEncryptedSecret();

This EncryptedKeyResult have lots of information:

First: the generated bitcoin address, then an EncryptedKey as we have seen in the Key Encryption

part, and last but not the least, the ConfirmationCode, so that the third party can prove that the

generated key and address correspond effectively to your password.

EncryptedKeyResult encryptedKey1 = passphraseCode.GenerateEncryptedSecret();

Console.WriteLine(encryptedKey1.GeneratedAddress);

Console.WriteLine(encryptedKey1.EncryptedKey);
Console.WriteLine(encryptedKey1.ConfirmationCode);

1PjHUAuSnZjLRoJrC9HnhsGj4RdDCoTFUm

6PnUmv2YPEnb6NtzqQmE9o6M5w8xAeod94VyzhhGPe9qaT63Rxzk9VLUmS

cfrm38VUVzCzhvJGAX22WtNdtmNwsCBHNj6Bx82QfW7NEUHRMBANaxDZxPCdXzjFouQXQLiskvF

As the owner, once you receive these info, you need to check that the key generator did not cheat by

using ConfirmationCode.Check, then get your private key with your password.

Console.WriteLine(confirmationCode.Check("my secret", generatedAddress));

BitcoinSecret privateKey = encryptedKey.GetSecret("my secret");

Console.WriteLine(privateKey.GetAddress() == generatedAddress);
Console.WriteLine(privateKey);

30

Nicolas Dorier & Bill Strait

CC (ASA 3U)

True

True

L58tYn6FcC6Ra6iqTMggCaZupCgbRMdfvFjNUrKj5D9zgq6g685Z

So, we have just seen how the third party can generate encrypted key on your behalf, without

knowing your password and private key.

However, one problem remains:

• All backup of your wallet that you have will become outdated when you generate a new key,

BIP 32, or Hierarchical Deterministic Wallets (HD wallets) proposes another solution, and is more

widely supported.

b. HD Wallet (BIP 32)

Let’s keep in mind the problems that we want to resolve:

• Prevent outdated backups

• Delegating key / address generation to an untrusted peer

A “Deterministic” wallet would fix our backup problem.

With such wallet, you would have to save only the seed. From this seed, you can generate the same

series of private key over and over.

This is what the “Deterministic” stands for.

As you can see, from the master key, I can generate new keys:

31

Nicolas Dorier & Bill Strait

CC (ASA 3U)

ExtKey masterKey = new ExtKey();
Console.WriteLine("Master key : " + masterKey.ToString(Network.Main));
for (int i = 0 ; i < 5 ; i++)
{

 ExtKey key = masterKey.Derive((uint)i);
 Console.WriteLine("Key " + i + " : " + key.ToString(Network.Main));
}

Master key :

xprv9s21ZrQH143K3JneCAiVkz46BsJ4jUdH8C16DccAgMVfy2yY5L8A4XqTvZqCiKXhNWFZXdLH6VbsCs

qBFsSXahfnLajiB6ir46RxgdkNsFk

Key 0 :

xprv9tvBA4Kt8UTuEW9Fiuy1PXPWWGch1cyzd1HSAz6oQ1gcirnBrDxLt8qsis6vpNwmSVtLZXWgHbqff9

rVeAErb2swwzky82462r6bWZAW6Ty

Key 1 :

xprv9tvBA4Kt8UTuHyzrhkRWh9xTavFtYoWhZTopNHGJSe3KomssRrQ9MTAhVWKFp4d7D8CgmT7TRza

uoAZXp3xwHQfxr7FpXfJKpPDUtiLdmcF

Key 2 :

xprv9tvBA4Kt8UTuLoEZPpW9fBEzC3gfTdj6QzMp8DzMbAeXgDHhSMmdnxSFHCQXycFu8FcqTJRm2ka

mjeE8CCKzbiXyoKWZ9ihiF7J5JicgaLU

Key 3 :

xprv9tvBA4Kt8UTuPwJQyxuZoFj9hcEMCoz7DAWLkz9tRMwnBDiZghWePdD7etfi9RpWEWQjKCM8wH

vKQwQ4uiGk8XhdKybzB8n2RVuruQ97Vna

Key 4 :

xprv9tvBA4Kt8UTuQoh1dQeJTXsmmTFwCqi4RXWdjBp114rJjNtPBHjxAckQp3yeEFw7Gf4gpnbwQTgDp

GtQgcN59E71D2V97RRDtxeJ4rVkw4E

Key 5 :

xprv9tvBA4Kt8UTuTdiEhN8iVDr5rfAPSVsCKpDia4GtEsb87eHr8yRVveRhkeLEMvo3XWL3GjzZvncfWVK

nKLWUMNqSgdxoNm7zDzzD63dxGsm

You only need to save the masterKey, since you can generate the same suite of private keys over and

over.

As you can see, these keys are ExtKey and not Key as you are used to. However, this should not stop

you since you have the real private key inside:

32

Nicolas Dorier & Bill Strait

CC (ASA 3U)

The base58 type equivalent of ExtKey is called BitcoinExtKey.

But how can we solve our second problem: delegating address creation to a peer that can potentially

be hacked (like a payment server)?

The trick is that you can “neuter” your master key, then you have a public (without private key)

version of the master key. From this neutered version, a third party can generate public keys without

knowing the private key.

ExtPubKey masterPubKey = masterKey.Neuter();

for (int i = 0 ; i < 5 ; i++)

{

 ExtPubKey pubkey = masterPubKey.Derive((uint)i);

 Console.WriteLine("PubKey " + i + " : " + pubkey.ToString(Network.Main));
}

PubKey 0 :

xpub67uQd5a6WCY6A7NZfi7yGoGLwXCTX5R7QQfMag8z1RMGoX1skbXAeB9JtkaTiDoeZPprGH1drvgY

cviXKppXtEGSVwmmx4pAdisKv2CqoWS

PubKey 1 :

xpub67uQd5a6WCY6CUeDMBvPX6QhGMoMMNKhEzt66hrH6sv7rxujt7igGf9AavEdLB73ZL6ZRJTRnhy

c4BTiWeXQZFu7kyjwtDg9tjRcTZunfeR

PubKey 2 :

xpub67uQd5a6WCY6Dxbqk9Jo9iopKZUqg8pU1bWXbnesppsR3Nem8y4CVFjKnzBUkSVLGK4defHzKZ3jj

AqSzGAKoV2YH4agCAEzzqKzeUaWJMW

PubKey 3 :

xpub67uQd5a6WCY6HQKya2Mwwb7bpSNB5XhWCR76kRaPxchE3Y1Y2MAiSjhRGftmeWyX8cJ3kL7LisJ

3s4hHDWvhw3DWpEtkihPpofP3dAngh5M

PubKey 4 :

xpub67uQd5a6WCY6JddPfiPKdrR49KYEuXUwwJJsL5rWGDDQkpPctdkrwMhXgQ2zWopsSV7buz61e5

mGSYgDisqA3D5vyvMtKYP8S3EiBn5c1u4

So imagine that your payment server generate pubkey1, you can get the corresponding private key

with your private master key.

33

Nicolas Dorier & Bill Strait

CC (ASA 3U)

masterKey = new ExtKey();

masterPubKey = masterKey.Neuter();

//The payment server generate pubkey1

ExtPubKey pubkey1 = masterPubKey.Derive((uint)1);

//You get the private key of pubkey1
ExtKey key1 = masterKey.Derive((uint)1);

//Check it is legit

Console.WriteLine("Generated address : " +

pubkey1.PubKey.GetAddress(Network.Main));

Console.WriteLine("Expected address : " +

key1.PrivateKey.PubKey.GetAddress(Network.Main));

Generated address : 1Jy8nALZNqpf4rFN9TWG2qXapZUBvquFfX

Expected address : 1Jy8nALZNqpf4rFN9TWG2qXapZUBvquFfX

ExtPubKey is similar to ExtKey except that it holds a PubKey and not a Key.

Now we have seen how Deterministic keys solve our problems, let’s speak about what the

“hierarchical” is for.

In the previous exercise, we have seen that by combining master key + index we could generate

another key. We call this process Derivation, master key is the parent key, and the generated key is

called child key.

However, you can also derivate children from the child key. This is what the “hierarchical” stands for.

This is why conceptually more generally you can say: Parent Key + KeyPath => Child Key

34

Nicolas Dorier & Bill Strait

CC (ASA 3U)

In this diagram, you can derivate Child(1,1) from parent in two different way:

ExtKey parent = new ExtKey();

ExtKey child11 = parent.Derive(1).Derive(1);

Or

ExtKey parent = new ExtKey();

ExtKey child11 = parent.Derive(new KeyPath("1/1"));

So in summary:

It works the same for ExtPubKey.

Why do you need hierarchical keys? Because it might be a nice way to classify the type of your keys

for multi account purpose. More on BIP44.

It also permit to segment account rights across an organization.

Imagine you are CEO of a company. You want control over all wallet, but you don’t want that the

Accounting department spend the money of the Marketing department.

35

Nicolas Dorier & Bill Strait

CC (ASA 3U)

So your first idea would be to generate one hierarchy for each department.

However, in such case, Accounting and Marketing would be able to recover the CEO’s private key.

We define such child keys as non-hardened.

ExtKey ceoKey = new ExtKey();
Console.WriteLine("CEO: " + ceoKey.ToString(Network.Main));
ExtKey accountingKey = ceoKey.Derive(0, hardened: false);

ExtPubKey ceoPubkey = ceoKey.Neuter();

//Recover ceo key with accounting private key and ceo public key
ExtKey ceoKeyRecovered = accountingKey.GetParentExtKey(ceoPubkey);
Console.WriteLine("CEO recovered: " + ceoKeyRecovered.ToString(Network.Main));

36

Nicolas Dorier & Bill Strait

CC (ASA 3U)

CEO:

xprv9s21ZrQH143K2XcJU89thgkBehaMqvcj4A6JFxwPs6ZzGYHYT8dTchd87TC4NHSwvDuexuFVFpYaAt

3gztYtZyXmy2hCVyVyxumdxfDBpoC

CEO recovered:

xprv9s21ZrQH143K2XcJU89thgkBehaMqvcj4A6JFxwPs6ZzGYHYT8dTchd87TC4NHSwvDuexuFVFpYaAt

3gztYtZyXmy2hCVyVyxumdxfDBpoC

In other words, a non-hardened key can “climb” the hierarchy.

Non-hardened key should only be used for categorizing accounts that belongs to a single control.

So in our case, the CEO should create a hardened key, so the accounting department will not be able

to climb.

ExtKey ceoKey = new ExtKey();

Console.WriteLine("CEO: " + ceoKey.ToString(Network.Main));

ExtKey accountingKey = ceoKey.Derive(0, hardened: true);

ExtPubKey ceoPubkey = ceoKey.Neuter();

ExtKey ceoKeyRecovered = accountingKey.GetParentExtKey(ceoPubkey); //Crash

You can also create hardened key by via the ExtKey.Derivate(KeyPath), by using an apostrophe after

a child’s index:

var nonHardened = new KeyPath("1/2/3");

var hardened = new KeyPath("1/2/3'");

So let’s imagine that the Accounting Department generate 1 parent key for each customer, and a

child for each of the customer’s payment.

As the CEO, you want to spend the money on one of these addresses. Here is how you would

proceed.

ceoKey = new ExtKey();

string accounting = "1'";

int customerId = 5;

int paymentId = 50;

KeyPath path = new KeyPath(accounting + "/" + customerId + "/" + paymentId);

//Path : "1'/5/50"

ExtKey paymentKey = ceoKey.Derive(path);

c. Mnemonic Code for HD Keys (BIP39)

As you have seen, generating an HD keys is easy. However, what if we want as easy way to transmit

such key by telephone or hand writing?

Cold wallets like Trezor, generates the HD Keys from a sentence that can easily be written down.

They call such sentence “the seed” or “mnemonic”. And it can eventually be protected by a password

or a PIN.

37

Nicolas Dorier & Bill Strait

CC (ASA 3U)

The language that you use to generate your easy to write sentence is called a Wordlist

Mnemonic mnemo = new Mnemonic(Wordlist.English, WordCount.Twelve);

ExtKey hdRoot = mnemo.DeriveExtKey("my password");

Console.WriteLine(mnemo);

minute put grant neglect anxiety case globe win famous correct turn link

Now, if you have the mnemonic and the password, you can recover the hdRoot key.

mnemo = new Mnemonic("minute put grant neglect anxiety case globe win famous

correct turn link",

 Wordlist.English);
hdRoot = mnemo.DeriveExtKey("my password");

Currently supported wordlist are, English, Japanese, Spanish, Chinese (simplified an traditional).

38

Nicolas Dorier & Bill Strait

CC (ASA 3U)

d. Dark Wallet

This name is unfortunate since there is nothing dark about it, and it attract unwanted attention and

worries.

Dark Wallet is a practical solution that fix our two initial problems:

• Prevent outdated backups

• Delegating key / address generation to an untrusted peer

But it has a bonus killer feature.

You have to share only one address with the world (called StealthAddress), without leaking any

privacy.

Let’s remind us that if you share one BitcoinAddress with everybody, then all can see your balance

by consulting the blockchain… That’s not the case with a StealthAddress.

This is a real shame it was labeled as dark since it solves partially the important problem of privacy

leaking caused by the pseudo-anonymity of Bitcoin. A better name would have been: One Address.

In Dark Wallet terminology, here are the different actors:

• Scanner knows the Scan Key, a secret that allows him to detect the transactions that belong

to the Receiver.

• The Receiver knows the Spend Key, a secret that will allows him to spend the coins he

receives from one of such transaction.

• The Payer knows the StealthAddress of the Receiver

The rest is operational details.

Underneath, this StealthAddress is composed of one or several Spend PubKey (for multi sig), and

one Scan PubKey.

39

Nicolas Dorier & Bill Strait

CC (ASA 3U)

var scanKey = new Key();

var spendKey = new Key();

BitcoinStealthAddress stealthAddress

 = new BitcoinStealthAddress

 (

 scanKey: scanKey.PubKey,

 pubKeys: new[] { spendKey.PubKey },

 signatureCount: 1,

 bitfield: null,

 network: Network.Main);

The payer, will take your StealthAddress, generate a temporary key called Ephem Key and will

generate a Stealth Pub Key, from which the Bitcoin address to which the payment will be done is

generated.

Then, he will package the Ephem PubKey in a Stealth Metadata object embedded that in the

OP_RETURN of the transaction (as we have done for the first challenge)

He will also add the output to the generated bitcoin address. (the address of the Stealth pub key)

var ephemKey = new Key();

Transaction transaction = new Transaction();

stealthAddress.SendTo(transaction, Money.Coins(1.0m), ephemKey);
Console.WriteLine(transaction);

The creation of the EphemKey being an implementation details, you can omit it, NBitcoin will

generate one automatically:

Transaction transaction = new Transaction();

stealthAddress.SendTo(transaction, Money.Coins(1.0m));

Console.WriteLine(transaction);

40

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 ….

 "in": [],

 "out": [

 {

 "value": "0.00000000",

 "scriptPubKey": "OP_RETURN

06000000000211e76c3de929f7d8b3473f6e41fc31016d7a3e56a47e9f541b0d1cc7fa3f8819"

 },

 {

 "value": "1.00000000",

 "scriptPubKey": "OP_DUP OP_HASH160 b4638a6b452bbfc6fdbb4e1e8c9f1952bbd18c39

OP_EQUALVERIFY OP_CHECKSIG"

 }

]

}

Then the payer add and signs the inputs, then sends the transaction on the network.

The Scanner knowing the StealthAddress and the Scan Key can recover the Stealth PubKey and so

expected BitcoinAddress payment.

Then the scanner checks if one of the output of the transaction correspond to such address.

If it is, then Scanner notify the Receiver about the transaction.

The Receiver can then get the private key of the address with his Spend Key.

41

Nicolas Dorier & Bill Strait

CC (ASA 3U)

The code explaining how, as a Scanner, to scan a transaction and how, as a Receiver, to uncover the

private key, will be explained later in the TransactionBuilder part.

It should be noted that a StealthAddress can have multiple spend pubkeys, in which case, the

address represent a multi sig.

One limit of Dark Wallet is the use of OP_RETURN, so we can’t easily embed arbitrary data in the

transaction as we have done for in Bitcoin Transfer. (Current bitcoin rules allows only one

OP_RETURN of 40 bytes, soon 80, per transaction)

42

Nicolas Dorier & Bill Strait

CC (ASA 3U)

IV. Other	types	of	ownership	

I will briefly talk about each type of ScriptPubKey you will likely see on the blockchain. Then I will

explain how to sign easily each of those types in the last part of the chapter “Using the

TransactionBuilder”.

1. P2PK[H] (Pay to Public Key [Hash])

In part 2 we learned that a Bitcoin Address was the hash of a public key.

We also learned that as far as the blockchain is concerned, there is no such thing as a bitcoin

address. The blockchain identifies a receiver with a ScriptPubKey, and such ScriptPubKey could be

generated from the address. (and vice versa)

Key key = new Key();

BitcoinAddress address = key.PubKey.GetAddress(Network.Main);

Console.WriteLine(address.ScriptPubKey);

OP_DUP OP_HASH160 c86bf818bfd2b4943c003464815a8259c0de5e59 OP_EQUALVERIFY

OP_CHECKSIG

However, all ScriptPubKey does not represent a Bitcoin Address.

Here is an example of the first transaction in the blockchain. (The genesis)

Console.WriteLine(Network.Main.GetGenesis().Transactions[0].ToString());

{

…

 "out": [

 {

 "value": "50.00000000",

 "scriptPubKey":

"04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f3

5504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f OP_CHECKSIG"

 }

]

}

You can see the form of the scriptPubKey is different:

A bitcoin address is represented by: OP_DUP <hash> OP_EQUALVERIFY OP_CHECKSIG

But here we have : <pubkey> OP_CHECKSIG

In fact, at the beginning, public key were used directly in the ScriptPubKey.

Now we are mainly using the hash of the public key.

43

Nicolas Dorier & Bill Strait

CC (ASA 3U)

key = new Key();

Console.WriteLine("Pay to public key : " + key.PubKey.ScriptPubKey);

Console.WriteLine();
Console.WriteLine("Pay to public key hash : " + key.PubKey.Hash.ScriptPubKey);

Pay to public key : 02fb8021bc7dedcc2f89a67e75cee81fedb8e41d6bfa6769362132544dfdf072d4

OP_CHECKSIG

Pay to public key hash : OP_DUP OP_HASH160 0ae54d4cec828b722d8727cb70f4a6b0a88207b2

OP_EQUALVERIFY OP_CHECKSIG

These 2 types of payment are referred as P2PK (pay to public key) and P2PKH (pay to public key

hash).

Satoshi decided to use P2PKH instead of P2PK for two reasons:

• Elliptic Curve Cryptography, the cryptography used by your public key and private key) is

vulnerable to a modified Shor's algorithm for solving the discrete logarithm problem on

elliptic curves. In plain English, it means that, with a quantum computer, in theory, it is

possible in some distant future to retrieve a private key from a public key.

By publishing the public key only when the coin are spend, such attack is rendered

ineffective. (assuming addresses are not reused)

• The hash being smaller (20 bytes), it is smaller to print, and easier to embed into small

storage like a QR code.

44

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Nowadays, there is no reason to use P2PK directly, but it is still used in combination with P2SH. (see

later)

2. P2WPKH (Pay to Witness Public Key Hash)

In 2015, Pieter Wuille introduced a new feature to bitcoin called Segregated Witness or shorter,

segwit. Basically, Segregated Witness move the proof of ownership from the scriptSig part of the

transaction, to a new part called the witness of the input.

There is several reason to use this new scheme, here is a summary, for more details go to

https://bitcoincore.org/en/2016/01/26/segwit-benefits/

• Third party Malleability Fix: Previously, a third party could change the transaction id of your

transaction before it was confirmed. Not anymore.

• Linear sig hash scaling: Signing a transaction would require hashing the whole transaction for

every input. This was a potential DDoS vector attack for large transactions.

• Signing of input values: The amount that is spent in an input is also signed, meaning the

signer can’t be tricked about the amount of fee that is actually paid.

• Capacity increase: It will now be possible to have more than 1MB of transactions every 10

min, up to around 1.75.

• Fraud proof: Will be developed later, but SPV wallet will be able to validate more consensus

rule than just following the longest chain.

Before the transaction signature belonged to the calculation of the transaction id, not anymore.

The signature contains the same information as a P2PKH spending, but is located in the witness

instead of the scriptSig. The scriptPubKey though, is modified from

OP_DUP OP_HASH160 0067c8970e65107ffbb436a49edd8cb8eb6b567f OP_EQUALVERIFY

OP_CHECKSIG

To

0 0067c8970e65107ffbb436a49edd8cb8eb6b567f

For nodes which did not upgrade, this looks like as two pushes on the stack. This means that any

scriptSig can spend them. So even without the signatures, old nodes will consider such transactions

valid. New nodes interprete the first push as the witness version and the second push as the witness

program.

But new nodes will require the signature to get the transaction verified.

45

Nicolas Dorier & Bill Strait

CC (ASA 3U)

In NBitcoin, spending a P2WPKH output is not different from spending a normal P2PKH, to get the

ScriptPubKey to use from a public key, use PubKey.WitHash instead of PubKey.Hash.

var key = new Key();

Console.WriteLine(key.PubKey.WitHash.ScriptPubKey);

Which will output your something like

0 0067c8970e65107ffbb436a49edd8cb8eb6b567f

Signing the spending of such coin will be explained in the “Using the TransactionBuilder part”, and

does not differ, in any way, from the code for signing a P2PKH output.

The witness, similar to the scriptSig of P2PKH, and the scriptSig empty:

"in": [

 {

 "prev_out": {

 "hash": "725497eaef527567a0a18b310bbdd8300abe86f82153a39d2f87fef713dc8177",

 "n": 0

 },

 "scriptSig": "",

 "witness":

"3044022079d443be2bd39327f92adf47a34e4b6ad7c82af182c71fe76ccd39743ced58cf0220149de3e

8f11e47a989483f371d3799a710a7e862dd33c9bd842c417002a1c32901

0363f24cd2cb27bb35eb2292789ce4244d55ce580218fd81688197d4ec3b005a67"

 }

Once again, the semantic of P2WPKH is the same as the semantic of P2PKH, except that the signature

is not placed at the same location as before.

3. Multi Sig

It is possible to have shared ownership on coins.

For that you will create a ScriptPubKey that represent a m-of-n multi sig, this means that in order to

spend the coins, m private keys will need to sign on the n different public key provided.

Let’s see how it works, let’s create a multi sig with Bob, Alice, and Satoshi, and 2 of them needed to

spend a coin.

Key bob = new Key();

Key alice = new Key();

Key satoshi = new Key();

var scriptPubKey = PayToMultiSigTemplate

 .Instance

 .GenerateScriptPubKey(2, new[] { bob.PubKey, alice.PubKey, satoshi.PubKey });

Console.WriteLine(scriptPubKey);

46

Nicolas Dorier & Bill Strait

CC (ASA 3U)

2 0282213c7172e9dff8a852b436a957c1f55aa1a947f2571585870bfb12c0c15d61

036e9f73ca6929dec6926d8e319506cc4370914cd13d300e83fd9c3dfca3970efb

0324b9185ec3db2f209b620657ce0e9a792472d89911e0ac3fc1e5b5fc2ca7683d 3

OP_CHECKMULTISIG

As you can see, the scriptPubkey have the following form: <sigsRequired> <pubkeys…>

<pubKeysCount> OP_CHECKMULTISIG

The process for signing it is a little more complicated than just calling Transaction.Sign, which does

not work for multi sig.

Even if we will talk more deeply about the subject, let’s use the TransactionBuilder for signing the

transaction.

Imagine the multi sig received a coin in a transaction called received.

Transaction received = new Transaction();

received.Outputs.Add(new TxOut(Money.Coins(1.0m), scriptPubKey));

Satoshi and Alice agree to pay me 1.0 BTC for my services.

So the get the Coin they received from the transaction:

Coin coin = received.Outputs.AsCoins().First();

Then, with the TransactionBuilder, create an unsigned transaction.

BitcoinAddress nico = new Key().PubKey.GetAddress(Network.Main);

TransactionBuilder builder = new TransactionBuilder();

Transaction unsigned =

 builder

 .AddCoins(coin)

 .Send(nico, Money.Coins(1.0m))

 .BuildTransaction(false);

The transaction is not currently signed.

Here is how Alice signs it.

builder = new TransactionBuilder();

Transaction aliceSigned =

 builder

 .AddCoins(coin)

 .AddKeys(alice)
 .SignTransaction(unsigned);

47

Nicolas Dorier & Bill Strait

CC (ASA 3U)

And then Satoshi

builder = new TransactionBuilder();

Transaction satoshiSigned =

 builder

 .AddCoins(coin)

 .AddKeys(satoshi)
 .SignTransaction(unsigned);

Now, Satoshi and Alice can combine their signature into one transaction.

builder = new TransactionBuilder();
Transaction fullySigned =
 builder
 .AddCoins(coin)

 .CombineSignatures(satoshiSigned, aliceSigned);

Console.WriteLine(fullySigned);

48

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 ….

 "in": [

 {

 "prev_out": {

 "hash": "9df1e011984305b78210229a86b6ade9546dc69c4d25a6bee472ee7d62ea3c16",

 "n": 0

 },

 "scriptSig": "0

3045022100a14d47c762fe7c04b4382f736c5de0b038b8de92649987bc59bca83ea307b1a202203e38

dcc9b0b7f0556a5138fd316cd28639243f05f5ca1afc254b883482ddb91f01

3044022044c9f6818078887587cac126c3c2047b6e5425758e67df64e8d682dfbe373a2902204ae7fda

6ada9b7a11c4e362a0389b1bf90abc1f3488fe21041a4f7f14f1d856201"

 }

],

 "out": [

 {

 "value": "1.00000000",

 "scriptPubKey": "OP_DUP OP_HASH160 d4a0f6c5b4bcbf2f5830eabed3daa7304fb794d6

OP_EQUALVERIFY OP_CHECKSIG"

 }

]

}

The transaction is now ready to be sent on the network.

Even if the Bitcoin network supports multi sig as explained here, one question worth asking is: How

can you ask to a user who has no clue about bitcoin to pay on satoshi/alice/bob multi sig, since such

scriptPubKey can’t be represented by easy to use Bitcoin Address like we have seen before?

49

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Don’t you think it would be cool if we could to represent such scriptPubKey as easily and compactly

as a Bitcoin Address?

Well, this is possible and it is called a Bitcoin Script Address also called Pay to Script Hash. (P2SH)

Nowadays, native Pay To Multi Sig as you have seen here, and native P2PK, are never used directly

as such, they are wrapped into Pay To Script Hash payment.

4. P2SH (Pay To Script Hash)

As seen previously, Multi-Sig works easily in code, however, before p2sh, there was no way to ask a

customer to pay to a multi-sig scriptPubKey as easily as we could hand him a Bitcoin Address.

P2SH, or Pay To Script Hash, is an easy way to represent any scriptPubKey as a simple Bitcoin Script

Address, no matter how complicated it is.

So let’s see what looked like the multi sig we created in the previous part.

Key bob = new Key();

Key alice = new Key();

Key satoshi = new Key();

var scriptPubKey = PayToMultiSigTemplate

 .Instance

 .GenerateScriptPubKey(2, new[] { bob.PubKey, alice.PubKey, satoshi.PubKey });

Console.WriteLine(scriptPubKey);

2 0282213c7172e9dff8a852b436a957c1f55aa1a947f2571585870bfb12c0c15d61

036e9f73ca6929dec6926d8e319506cc4370914cd13d300e83fd9c3dfca3970efb

0324b9185ec3db2f209b620657ce0e9a792472d89911e0ac3fc1e5b5fc2ca7683d 3

OP_CHECKMULTISIG

Complicated isn’t it?

Instead, let’s see how such scriptPubKey would look like as a P2SH payment.

Key bob = new Key();

Key alice = new Key();

Key satoshi = new Key();

Script redeemScript =

 PayToMultiSigTemplate

 .Instance

 .GenerateScriptPubKey(2, new[] { bob.PubKey, alice.PubKey, satoshi.PubKey });

Console.WriteLine(redeemScript.Hash.ScriptPubKey);

OP_HASH160 57b4162e00341af0ffc5d5fab468d738b3234190 OP_EQUAL

Do you see the difference? This p2sh scriptPubKey represents the hash of my multi-sig script.

(redeemScript.Hash.ScriptPubKey)

Since it is a hash, you can easily convert is as a base58 string BitcoinScriptAddress.

50

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Key bob = new Key();

Key alice = new Key();

Key satoshi = new Key();

Script redeemScript =

 PayToMultiSigTemplate

 .Instance

 .GenerateScriptPubKey(2, new[] { bob.PubKey, alice.PubKey, satoshi.PubKey });

//Console.WriteLine(redeemScript.Hash.ScriptPubKey);

Console.WriteLine(redeemScript.Hash.GetAddress(Network.Main));

3E6RvwLNfkH6PyX3bqoVGKzrx2AqSJFhjo

Such address is understood by any client wallet. Even if such wallet does not understand what “multi

sig” is.

In P2SH payment, we refer as the Redeem Script, the scriptPubKey that got hashed.

Since the payer only knows about the Hash of the RedeemScript, he does not know the Redeem

Script, and so, in our case, don’t even have to know that he is sending money to a multi sig of

Bob/Satoshi/Alice.

Signing such transaction is similar to what we have done before. The only difference is that you have

to provide the Redeem Script when you build the Coin for the TransactionBuilder.

Imagine that the multi sig P2SH receive a coin in a transaction called received.

51

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Script redeemScript =

 PayToMultiSigTemplate

 .Instance

 .GenerateScriptPubKey(2, new[] { bob.PubKey, alice.PubKey, satoshi.PubKey });

////Console.WriteLine(redeemScript.Hash.ScriptPubKey);

//Console.WriteLine(redeemScript.Hash.GetAddress(Network.Main));

Transaction received = new Transaction();

//Pay to the script hash

received.Outputs.Add(new TxOut(Money.Coins(1.0m), redeemScript.Hash));

Warning: The payment is sent to redeemScript.Hash and not to redeemScript!

Then, once alice/bob/satoshi want to spend what they received, instead of creating a Coin they

create a ScriptCoin.

//Give the redeemScript to the coin for Transaction construction

//and signing

ScriptCoin coin = received.Outputs.AsCoins().First()
 .ToScriptCoin(redeemScript);

The rest of the code concerning transaction generation and signing is exactly the same as in the

previous part with native multi sig.

5. P2WSH (Pay to Witness Script Hash)

As with P2PKH/P2WPKH, the only difference between P2SH and P2WSH is about the location of what

was previously in the scriptSig, and the scriptPubKey being modified.

The scriptPubKey is changed from something like:

OP_HASH160 10f400e996c34410d02ae76639cbf64f4bdf2def OP_EQUAL

To:

52

Nicolas Dorier & Bill Strait

CC (ASA 3U)

0 e4d3d21bab744d90cd857f56833252000ac0fade318136b713994b9319562467

That you can print with the following code: (both hash are derived from the same public key)

var key = new Key();

Console.WriteLine(key.PubKey.ScriptPubKey.WitHash.ScriptPubKey);

With what was previously in the scriptSig (signature + redeem script), moved to the witness:

"in": [

 {

 "prev_out": {

 "hash": "ffa2826ba2c9a178f7ced0737b559410364a62a41b16440beb299754114888c4",

 "n": 0

 },

 "scriptSig": "",

 "witness":

"304402203a4d9f42c190682826ead3f88d9d87e8c47db57f5c272637441bafe11d5ad8a302206ac21b

2bfe831216059ac4c91ec3e4458c78190613802975f5da5d11b55a69c601

210243b3760ce117a85540d88fa9d3d605338d4689bed1217e1fa84c78c22999fe08ac"

 }

]

As the P2SH payment explained previously, P2WSH use ScriptCoin in exactly the same way to be

signed.

6. P2W* over P2SH

While using witness scriptPubKey for your scripting needs is appealing, the reality is that most of

nowadays wallets only support P2PKH or P2SH addresses.

To harness the advantages of segwit, while being compatible with old software, P2W over P2SH is

allowed. For old node, it will looks like a normal P2SH payment.

You can transform any P2W* to a P2W* over P2SH by:

1. Replacing the ScriptPubKey by its P2SH equivalent.

2. The former ScriptPubKey will be placed as the only push in the scriptSig in the spending

transaction,

3. All other data will be pushed in the witness of the spending transaction,

Don’t worry, if this sound complicated, the TransactionBuilder will allow you to abstract the

plumbing effectively.

Let’s take the example of P2WPKH over P2SH, also called with the sweet name of P2SH(P2WPKH).

Printing the ScriptPubKey:

var key = new Key();
Console.WriteLine(key.PubKey.WitHash.ScriptPubKey.Hash.ScriptPubKey);

53

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Which gives us a well known P2SH scriptPubKey.

OP_HASH160 b19da5ca6e7243d4ec8eab07b713ff8768a44145 OP_EQUAL

Then, a signed transaction spending this output will look like:

"in": [

 {

 "prev_out": {

 "hash": "674ece694e5e28956138efacab96fc0bffd7c6cc1af7bb2729943fedf8f0b8b9",

 "n": 0

 },

 "scriptSig": "001404100ab485c95701bf0f4d73e3fe7d69ecc4f0ea",

 "witness":

"3045022100f4c14cf383c0c97bbdaf520ea06f7db6c61e0effbc4bd3dfea036a90272f6cce022055b0fc0

58759a7961e718d48a3dc4dd5580fffc310557925a0865dbe467a835901

0205b956a5afe8f34a01337f0949f5733b5e376caaea57c9624e40e739a0b1d16c"

 }

],

The scriptSig is only the push of the P2SH redeem script of the previous ScriptPubKey. (in other

words key.PubKey.WitHash.ScriptPubKey)

The witness is exactly the same as a normal P2WPKH payment.

In NBitcoin, signing a P2SH(P2WPKH) is exactly similar as signing a normal P2SH with ScriptCoin.

By following the same principle, let’s see how a P2SH(P2WSH) looks like. You need to understand

that in this case we are dealing with two different redeem scripts: The P2SH redeem script that need

to be put in the scriptSig of the spending transaction, AND the P2WSH redeem script that need to be

put in the witness.

Let’s print the scriptPubKey by following the first rule:

1. Replacing the ScriptPubKey by its P2SH equivalent.

var key = new Key();
Console.WriteLine(key.PubKey.ScriptPubKey.WitHash.ScriptPubKey.Hash.ScriptPubKey);

OP_HASH160 d06c0058175952afecc56d26ed16558b1ed40e42 OP_EQUAL

2. The former ScriptPubKey will be placed as the only push in the scriptSig in the spending

transaction,

3. All other data will be pushed in the witness of the spending transaction,

For 3. the ‘other data’, in the context of a P2WSH payment means the parameters of the P2WSH

redeem script followed by a push of the P2WSH redeem script.

54

Nicolas Dorier & Bill Strait

CC (ASA 3U)

 "in": [

 {

 "prev_out": {

 "hash": "1d23fa744a26cf6433f0841e9de7e088cf95e6f953e584b98d0de6ef4216765f",

 "n": 0

 },

 "scriptSig": "0020c54eb79829b2e26b71d15fd3b490b6e95cbdab361a45eed2cdfe642497480a6c",

 "witness":

"3045022100d7570c3bf87149a0be3ba2e8bfccbdd35c3da44f741695e9962014795fabc4fc02203183cf

a55a85728520b0f1ac59ac3ffa1a8526634fe619f99fac0f76016f366e01

2103146e87d7fcc81f3e044f97c6b262c01826f40a9ab9acae0f689983a5890a1f4dac"

 }

],

In summary, the P2SH Redeem Script is hashed to get the P2WSH scriptPubKey as normal P2WSH

payment. Then, as a normal P2SH payment the P2WSH scriptPubKey is replaced by hashed and used

to create the actual P2SH.

If P2SH/P2WSH/P2SH(P2WSH)/P2SH(P2WPKH) sounds complicated to you. Fear not.

NBitcoin, for all of those payments type only requires you to create a ScriptCoin by supplying the

Redeem (P2WSH redeem or P2SH redeem) and the ScriptPubKey, exactly as explained in the P2SH

part.

As far as NBitcoin is concerned, you just nedd to feed the right transaction output you want to spend,

with the right underlying redeem script, and the TransactionBuilder will figure out how to sign

correctly as explained in the previous Multi Sig part and the next “Using the TransactionBuilder”

part.

Compatible for P2SH/P2WSH/P2SH(P2WSH)/P2SH(P2WPKH)

You can browse additional examples of P2W* payments on http://n.bitcoin.ninja/checkscript

55

Nicolas Dorier & Bill Strait

CC (ASA 3U)

7. Arbitrary

From Bitcoin 0.10, the RedeemScript can be arbitrary, which means that with the script language of

Bitcoin, you can create your own definition of what “ownership” means.

For example, I can give money to whoever either know my date of birth (dd/mm/yyyy) serialized in

UTF8 either knows the private key of 1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB.

The details of the script language are out of scope, you can easily find the documentation on various

websites, and it is a stack based language so everyone having done some assembler should be able to

read it.

So first, let’s build the RedeemScript,

BitcoinAddress address =

BitcoinAddress.Create("1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB");
var birth = Encoding.UTF8.GetBytes("18/07/1988");
var birthHash = Hashes.Hash256(birth);
Script redeemScript = new Script(
 "OP_IF "
 + "OP_HASH256 " + Op.GetPushOp(birthHash.ToBytes()) + " OP_EQUAL " +
 "OP_ELSE "
 + address.ScriptPubKey + " " +
 "OP_ENDIF");

This RedeemScript means that there is 2 way of spending such ScriptCoin: either you know the data

that give birthHash (my birthdate), either you own the bitcoin address.

Let’s say I sent money to such redeemScript:

var tx = new Transaction();
tx.Outputs.Add(new TxOut(Money.Parse("0.0001"), redeemScript.Hash));

ScriptCoin scriptCoin = tx.Outputs.AsCoins().First().ToScriptCoin(redeemScript);

So let’s create a transaction that want to spend such output:

//Create spending transaction

Transaction spending = new Transaction();

spending.AddInput(new TxIn(new OutPoint(tx, 0)));

The first option is to know my birth date and to prove it in the scriptSig:

////Option 1 : Spender knows my birthdate

Op pushBirthdate = Op.GetPushOp(birth);

Op selectIf = OpcodeType.OP_1; //go to if

Op redeemBytes = Op.GetPushOp(redeemScript.ToBytes());

Script scriptSig = new Script(pushBirthdate, selectIf, redeemBytes);
spending.Inputs[0].ScriptSig = scriptSig;

You can see that in the scriptSig I push OP_1 so I enter in the OP_IF of my RedeemScript.

Since there is no backed-in template, for creating such scriptSig, you can see how to build a P2SH

scriptSig by hand.

Then you can check that the scriptSig prove the ownership of the scriptPubKey:

56

Nicolas Dorier & Bill Strait

CC (ASA 3U)

//Verify the script pass

var result = spending

 .Inputs

 .AsIndexedInputs()

 .First()
 .VerifyScript(tx.Outputs[0].ScriptPubKey);

Console.WriteLine(result);
///////////

True

The second way of spending the coin is by proving ownership of

1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB.

////Option 2 : Spender knows my private key
BitcoinSecret secret = new BitcoinSecret("...");
var sig = spending.SignInput(secret, scriptCoin);
var p2pkhProof = PayToPubkeyHashTemplate
 .Instance

 .GenerateScriptSig(sig, secret.PrivateKey.PubKey);

selectIf = OpcodeType.OP_0; //go to else
scriptSig = p2pkhProof + selectIf + redeemBytes;

spending.Inputs[0].ScriptSig = scriptSig;

And ownership is also proven

//Verify the script pass
result = spending
 .Inputs

 .AsIndexedInputs()

 .First()

 .VerifyScript(tx.Outputs[0].ScriptPubKey);

Console.WriteLine(result);
///////////

True

8. Using the TransactionBuilder

You have seen how the TransactionBuillder works when you have signed your first P2SH and Multi

Sig transaction.

We’ll see how you can harness its full power, for signing more complicated transactions.

With the TransactionBuilder you can:

• Spend any P2PK, P2WPK,P2WSH, P2PKH, Multi Sig

• Spend any P2SH on the previous redeem script

• Spend Stealth Coin (dark wallet)

• Issue and transfer Colored Coins (open asset, in the following part)

• Combine partially signed transactions

• Estimate the final size of an unsigned transaction and its fees

• Verify if a transaction is fully signed

57

Nicolas Dorier & Bill Strait

CC (ASA 3U)

The goal of the TransactionBuilder is to take Coin and Keys as input, and return back a signed or

partially signed transaction.

The TransactionBuilder will figure out what coin to use and what to sign by itself.

The usage of the builder is done in 4 steps:

• You gather the coins that spent,

• You gather the keys that you own,

58

Nicolas Dorier & Bill Strait

CC (ASA 3U)

• You enumerate how much money you want to send to what scriptPubKey,

• You build and sign the transaction,

• Optional: you give the transaction to somebody else, then he will sign or continue to build it,

So let’s gather some coins, for that let’s create a fake transaction with some funds on it.

Let’s say that the transaction has a P2PKH, P2PK, and multi sig coin of Bob and Alice.

var bob = new Key();

var alice = new Key();

var bobAlice = PayToMultiSigTemplate

 .Instance

 .GenerateScriptPubKey(2, bob.PubKey, alice.PubKey);

Transaction init = new Transaction();

init.Outputs.Add(new TxOut(Money.Coins(1.0m), alice.PubKey));

init.Outputs.Add(new TxOut(Money.Coins(1.0m), bob.PubKey.Hash));

init.Outputs.Add(new TxOut(Money.Coins(1.0m), bobAlice));

Now let’s say they want to use the coins of this transaction to pay Satoshi, they have to get the

Coins.

var satoshi = new Key();

Coin[] coins = init.Outputs.AsCoins().ToArray();

Now let’s say bob wants to sends 0.2 BTC, Alice 0.3 BTC, and they agree to use bobAlice to sends 0.5

BTC.

var builder = new TransactionBuilder();

Transaction tx = builder

 .AddCoins(bobCoin)
 .AddKeys(bob)

 .Send(satoshi, Money.Coins(0.2m))
 .SetChange(bob)

 .Then()
 .AddCoins(aliceCoin)

 .AddKeys(alice)

 .Send(satoshi, Money.Coins(0.3m))

 .SetChange(alice)

 .Then()

 .AddCoins(bobAliceCoin)

 .AddKeys(bob, alice)

 .Send(satoshi, Money.Coins(0.5m))

 .SetChange(bobAlice)

 .SendFees(Money.Coins(0.0001m))
 .BuildTransaction(sign: true);

Then you can verify it is fully signed and ready to send to the network,

Console.WriteLine(builder.Verify(tx));

True

The nice thing about this model is that it works the same way for P2SH, P2WSH, P2SH(P2WSH), and

P2SH(P2PKH) except you need to create ScriptCoin.

59

Nicolas Dorier & Bill Strait

CC (ASA 3U)

init = new Transaction();

init.Outputs.Add(new TxOut(Money.Coins(1.0m), bobAlice.Hash));

coins = init.Outputs.AsCoins().ToArray();

ScriptCoin bobAliceScriptCoin = coins[0].ToScriptCoin(bobAlice);

Then the signature

builder = new TransactionBuilder();

tx = builder

 .AddCoins(bobAliceScriptCoin)

 .AddKeys(bob, alice)

 .Send(satoshi, Money.Coins(1.0m))
 .SetChange(bobAlice.Hash)

 .BuildTransaction(true);
Console.WriteLine(builder.Verify(tx));

True

For Stealth Coin, this is basically the same thing. Except that, if you remember our introduction on

Dark Wallet, I said that you need a ScanKey to see the StealthCoin.

Let’s create darkAliceBob stealth address as in previous chapter:

60

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Key scanKey = new Key();

BitcoinStealthAddress darkAliceBob =

 new BitcoinStealthAddress

 (

 scanKey: scanKey.PubKey,

 pubKeys: new[] { alice.PubKey, bob.PubKey },

 signatureCount: 2,

 bitfield: null,

 network: Network.Main

);

Let’s say someone sent this transaction:

//Someone sent to darkAliceBob

init = new Transaction();

darkAliceBob
 .SendTo(init, Money.Coins(1.0m));

The scanner will detect the StealthCoin:

//Get the stealth coin with the scanKey

StealthCoin stealthCoin

 = StealthCoin.Find(init, darkAliceBob, scanKey);

And forward it to bob and alice, who will sign :

//Spend it

tx = builder

 .AddCoins(stealthCoin)

 .AddKeys(bob, alice, scanKey)

 .Send(satoshi, Money.Coins(1.0m))
 .SetChange(bobAlice.Hash)

 .BuildTransaction(true);
Console.WriteLine(builder.Verify(tx));

True

Note: You need the scanKey for spending a StealthCoin

61

Nicolas Dorier & Bill Strait

CC (ASA 3U)

V. Other	types	of	asset	

1. Colored Coins

In the previous chapters, we have seen several type of ownership.

You have seen all the different kind of ownership and proof of ownership, and understand how

bitcoin can be coded to invent new kinds of ownership.

So until now, you have seen how to exchange Bitcoins on the network. However you can use the

Bitcoin network for transferring and exchanging any type of assets.

We call such assets “colored coins”. As far as the Blockchain is concerned, there is no difference

between a Coin and a Colored Coin.

A colored coin is represented by a standard TxOut. Most of the time, such TxOut have a residual

Bitcoin value called “Dust”. (600 satoshi)

The real value of a colored coin reside in what the issuer of the coin will exchange against it.

Since a colored coin is nothing but a standard coin with special meaning, it follows that all what you

saw about proof of ownership and the TransactionBuilder stays true. You can transfer a colored coin

with exactly the same rules as before.

As far as the blockchain is concerned, a Colored Coin is a Coin like all others.

You can represent several type of asset with a colored coin: company shares, bonds, stocks, votes.

But no matter what type of asset you will represent, there will always have a trust relationship

between the issuer of the asset and the owner.

If you own some company share, then the company might decide to not send you dividends.

If you own a bonds and the bank might not exchange it at maturity.

However, a violation of contract might be automatically detected with the help of Ricardian

Contracts. A Ricardian Contract is a contract signed by the issuer with the rights attached to the

asset. Such contract can be either human readable (pdf), but also structured (json), so tools can

automatically prove any violation. The issuer can’t change the ricardian contract attached to an

asset.

The Blockchain is only the transport medium of a financial instrument.

The innovation is that everyone can create and transfer its own asset without intermediary, whereas

traditional asset transport medium (clearing houses), are either heavily regulated, or purposefully

kept secret, and closed to the general public.

Open Asset is the name of the protocol created by Flavien Charlon that describes how to transfer

and emit colored coins on the Blockchain.

Other protocols exist, but Open Asset is the most easy and flexible and the only one supported by

NBitcoin.

62

Nicolas Dorier & Bill Strait

CC (ASA 3U)

As the rest of the book, I will not go in the details of the Open Asset protocol, the github page of the

specification is better suited to this need.

2. Issuing an Asset

a. Objective

For the purpose of this exercise, I will emit BlockchainProgramming coins.

Owners of such coins will be able to download the Part 3 of this book just by sending them back to

me.

Don’t worry, the Part 3 will be available for everyone, but first to owners of BlockchainProgramming

coins.

I will send coins to people that gave me a tip, listed on the book’s website

http://blockchainprogramming.azurewebsites.net/

You’ll get 1 coin every 0.004 BTC you sent me + 1 coin if you added kind words.

Let’s see how I would code such feature.

b. Issuance Coin

In Open Asset, the Asset ID is derived from the issuer ScriptPubKey.

If you want to issue a Colored Coin, you need to prove ownership of such ScriptPubKey. And the only

way to do that on the Blockchain is by spending a coin belonging to such ScriptPubKey.

The coin that you will choose to spend for issuing colored coins is called “Issuance Coin” in NBitcoin.

I want to emit an Asset from the book bitcoin address: 1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB.

By taking a look at my balance, I decided to use the following coin for issuing assets.

{

 "transactionId":

"eb49a599c749c82d824caf9dd69c4e359261d49bbb0b9d6dc18c59bc9214e43b",

 "index": 0,

 "value": 2000000,

 "scriptPubKey": "76a914c81e8e7b7ffca043b088a992795b15887c96159288ac",

 "redeemScript": null

}

Here is how to create my issuance coin.

var coin = new Coin(

 fromTxHash: new

uint256("eb49a599c749c82d824caf9dd69c4e359261d49bbb0b9d6dc18c59bc9214e43b"),

 fromOutputIndex: 0,

 amount: Money.Satoshis(2000000),

 scriptPubKey: new

Script(Encoders.Hex.DecodeData("76a914c81e8e7b7ffca043b088a992795b15887c96159288ac

")));

var issuance = new IssuanceCoin(coin);

Now I need to build transaction and sign the transaction with the help of the TransactionBuilder.

63

Nicolas Dorier & Bill Strait

CC (ASA 3U)

var nico = BitcoinAddress.Create("15sYbVpRh6dyWycZMwPdxJWD4xbfxReeHe");
var bookKey = new BitcoinSecret("???????");
TransactionBuilder builder = new TransactionBuilder();

var tx = builder
 .AddKeys(bookKey)

 .AddCoins(issuance)

 .IssueAsset(nico, new AssetMoney(issuance.AssetId, 10))
 .SendFees(Money.Coins(0.0001m))
 .SetChange(bookKey.GetAddress())

 .BuildTransaction(true);

Console.WriteLine(tx);

{

 …

 "out": [

 {

 "value": "0.00000600",

 "scriptPubKey": "OP_DUP OP_HASH160 356facdac5f5bcae995d13e667bb5864fd1e7d59

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.01989400",

 "scriptPubKey": "OP_DUP OP_HASH160 c81e8e7b7ffca043b088a992795b15887c961592

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.00000000",

 "scriptPubKey": "OP_RETURN 4f410100010a00"

 }

]

}

You can see it include an OP_RETURN output. In fact, this is the location where information about

colored coins are stuffed.

Here is the format of the data in the OP_RETURN.

64

Nicolas Dorier & Bill Strait

CC (ASA 3U)

In our case, Quantities have only 10, which is the number of Asset I issued to nico.

Metadata is arbitrary data. We will see that we can put a url that point to an “Asset Definition”.

An “Asset Definition” is a document that describe what the Asset is. It is optional, we are not using it

in our case. (We’ll come back later on it in the Ricardian Contract part)

For more information check out the Open Asset Specification.

The transaction is ready to be sent on the network:

using (var node = Node.ConnectToLocal(Network.Main)) //Connect to the node

{

 node.VersionHandshake(); //Say hello
 //Advertize your transaction (send just the hash)

 node.SendMessage(new InvPayload(InventoryType.MSG_TX, tx.GetHash()));
 //Send it

 node.SendMessage(new TxPayload(tx));
 Thread.Sleep(500); //Wait a bit

}

My Bitcoin Wallet have both, the book address and the “Nico” address.

As you can see, Bitcoin Core only show the 0.0001 BTC of fees I paid, and ignore the 600 Satoshi coin

because of spam prevention feature.

This classical bitcoin wallet knows nothing about Colored Coins.

Worse: If a classical bitcoin wallet spend a colored coin, it will destroy the underlying asset and

transfer only the bitcoin value of the TxOut. (600 satoshi)

For preventing a user from sending Colored Coin to a wallet that do not support it, Open Asset have

its own address format, that only colored coins wallets understand.

nico = BitcoinAddress.Create("15sYbVpRh6dyWycZMwPdxJWD4xbfxReeHe");

Console.WriteLine(nico.ToColoredAddress());

65

Nicolas Dorier & Bill Strait

CC (ASA 3U)

akFqRqfdmAaXfPDmvQZVpcAQnQZmqrx4gcZ

Now, you can take a look on an Open Asset compatible wallet like Coinprism, and see my asset

correctly detected:

As I have told you before, the Asset ID is derived from the issuer’s ScriptPubKey, here is how to get it

in code:

var book = BitcoinAddress.Create("1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB");

var assetId = new AssetId(book).GetWif(Network.Main);

Console.WriteLine(assetId);

AVAVfLSb1KZf9tJzrUVpktjxKUXGxUTD4e

3. Transfer an Asset

So now, let’s imagine I sent you some BlockchainProgramming Coins.

How can you send me back the coins so I unlock the part 3 just for you?

You need to build a ColoredCoin.

In the sample above, let’s say I want to spend the 10 assets I received on the address “nico”.

From this web service, I can see what coin I want to spend.

66

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 "transactionId": "fa6db7a2e478f3a8a0d1a77456ca5c9fa593e49fd0cf65c7e349e5a4cbe58842",

 "index": 0,

 "value": 600,

 "scriptPubKey": "76a914356facdac5f5bcae995d13e667bb5864fd1e7d5988ac",

 "redeemScript": null,

 "assetId": "AVAVfLSb1KZf9tJzrUVpktjxKUXGxUTD4e",

 "quantity": 10

 }

Here is how to instantiate such Colored Coin in code:

var coin = new Coin(

 fromTxHash: new

uint256("fa6db7a2e478f3a8a0d1a77456ca5c9fa593e49fd0cf65c7e349e5a4cbe58842"),

 fromOutputIndex: 0,

 amount: Money.Satoshis(2000000),
 scriptPubKey: new Script(Encoders.Hex.DecodeData("76a914356fac-

dac5f5bcae995d13e667bb5864fd1e7d5988ac")));

BitcoinAssetId assetId = new BitcoinAssetId("AVAVfLSb1KZf9tJzrUVpktjxKUXGxUTD4e");

ColoredCoin colored = coin.ToColoredCoin(assetId, 10);

We’ll show later how you can use some web services or custom code to get the coins more easily.

I also needed another coin (forFees), to pay the fees.

The asset transfer is actually very easy with the TransactionBuilder.

var book = BitcoinAddress.Create("1KF8kUVHK42XzgcmJF4Lxz4wcL5WDL97PB");
var nicoSecret = new BitcoinSecret("??????????");
var nico = nicoSecret.GetAddress(); //15sYbVpRh6dyWycZMwPdxJWD4xbfxReeHe

var forFees = new Coin(
 fromTxHash: new

uint256("7f296e96ec3525511b836ace0377a9fbb723a47bdfb07c6bc3a6f2a0c23eba26"),
 fromOutputIndex: 0,

 amount: Money.Satoshis(4425000),
 scriptPubKey: new

Script(Encoders.Hex.DecodeData("76a914356facdac5f5bcae995d13e667bb5864fd1e7d5988ac

")));

TransactionBuilder builder = new TransactionBuilder();
var tx = builder
 .AddKeys(nicoSecret)

 .AddCoins(colored, forFees)

 .SendAsset(book, new AssetMoney(assetId, 10))
 .SetChange(nico)

 .SendFees(Money.Coins(0.0001m))
 .BuildTransaction(true);
Console.WriteLine(tx);

67

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 ….

 "out": [

 {

 "value": "0.00000000",

 "scriptPubKey": "OP_RETURN 4f410100010a00"

 },

 {

 "value": "0.00000600",

 "scriptPubKey": "OP_DUP OP_HASH160 c81e8e7b7ffca043b088a992795b15887c961592

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.04415000",

 "scriptPubKey": "OP_DUP OP_HASH160 356facdac5f5bcae995d13e667bb5864fd1e7d59

OP_EQUALVERIFY OP_CHECKSIG"

 }

]

}

Which basically succeed:

68

Nicolas Dorier & Bill Strait

CC (ASA 3U)

4. Unit tests

You can see that previously I hard coded the properties of ColoredCoin.

The reason is that I wanted only to show you how to construct a Transaction out of ColoredCoin

coins.

In real life, you would either depends on a third party API to fetch the colored coins of a transaction

or a balance. Which might be not a good idea, because it add a trust dependency to your program

with the API provider.

NBitcoin allows you either to depend on a web service, either to provide your own implementation

for fetching the color of a Transaction. This allows you to have a flexible way to unit test your code,

use another’s implementation or your own.

Let’s introduce two issuers: Silver and Gold. And three participants: Bob, Alice, Satoshi.

Let’s create a fake transaction that give some Bitcoins to Silver, Gold and Satoshi.

var gold = new Key();

var silver = new Key();

var goldId = gold.PubKey.ScriptPubKey.Hash.ToAssetId();
var silverId = silver.PubKey.ScriptPubKey.Hash.ToAssetId();

var bob = new Key();

var alice = new Key();
var satoshi = new Key();

var init = new Transaction()

{

 Outputs =

 {

 new TxOut("1.0", gold),

 new TxOut("1.0", silver),

 new TxOut("1.0", satoshi)

 }
};

Init does not contains any Colored Coin issuance and Transfer.

But imagine that you want to be sure of it, how would you proceed?

In NBitcoin, the summary of color transfers and issuances is described by a class called

ColoredTransaction.

69

Nicolas Dorier & Bill Strait

CC (ASA 3U)

You can see that the ColoredTransaction class will tell you:

• Which TxIn spends which Asset

• Which TxOut emits which Asset

• Which TxOut transfers which Asset

But the method that interest us right now is FetchColor, which will permit you to extract colored

information out of the transaction you gave in input.

You see that it depends on a IColoredTransactionRepository.

70

Nicolas Dorier & Bill Strait

CC (ASA 3U)

A IColoredTransactionRepository is only a store that will give you the ColoredTransaction from the

txid. However you can see that it depends on ITransactionRepository, which maps a Transaction id

to its transaction.

An implementation of IColoredTransactionRepository is CoinprismColoredTransactionRepository

which is a public API for colored coins operations.

However, you can easily do your own, here is how FetchColors works.

The simplest case is: The IColoredTransactionRepository knows the color, in such case FetchColors

only return that result.

The second case is that the IColoredTransactionRepository does not know anything about the color

of the transaction.

So FetchColors will need to compute the color itself according to the open asset specification.

However, for computing the color, FetchColors need the color of the parent transactions.

So it fetch each of them on the ITransactionRepository, and call FetchColors on each of them.

Once FetchColors has resolved the color of the parent’s recursively, it compute the transaction color,

and caches the result back in the IColoredTransactionRepository.

71

Nicolas Dorier & Bill Strait

CC (ASA 3U)

By doing that, future requests to fetch the color of a transaction will be resolved quickly.

Some IColoredTransactionRepository are read-only (like CoinprismColoredTransactionRepository so

the Put operation is ignored)

So, back to our example:

The trick when writing unit tests is to use an in memory IColoredTransactionRepository:

var repo = new NoSqlColoredTransactionRepository();

Now, we can put our init transaction inside.

repo.Transactions.Put(init);

Note that Put is an extension methods, so you will need to add

using NBitcoin.OpenAsset;

at the top of the file to get access to it.

And now, you can extract the color:

ColoredTransaction color = ColoredTransaction.FetchColors(init, repo);

Console.WriteLine(color);

72

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 "inputs": [],

 "issuances": [],

 "transfers": [],

 "destructions": []

}

As expected, the init transaction has no inputs, issuances, transfers or destructions of Colored Coins.

So now, let’s use the two coins sent to Silver and Gold as Issuance Coins.

var issuanceCoins =

 init

 .Outputs

 .AsCoins()

 .Take(2)
 .Select((c, i) => new IssuanceCoin(c))

 .OfType<ICoin>()
 .ToArray();

Gold is the first coin, Silver the second one.

From that you can send Gold to Satoshi with the TransactionBuilder, as we have done in the previous

exercise, and put the resulting transaction in the repository, and print the result.

var sendGoldToSatoshi =
 builder

 .AddKeys(gold)

 .AddCoins(issuanceCoins[0])

 .IssueAsset(satoshi, new AssetMoney(goldId, 10))
 .SetChange(gold)

 .BuildTransaction(true);
repo.Transactions.Put(sendGoldToSatoshi);

color = ColoredTransaction.FetchColors(sendGoldToSatoshi, repo);
Console.WriteLine(color);

73

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 "inputs": [],

 "issuances": [

 {

 "index": 0,

 "asset": "ATEwaRSNeCgBjxjcur7JtfypFjqQgAtLJs",

 "quantity": 10

 }

],

 "transfers": [],

 "destructions": []

}

This means that the first TxOut bears 10 gold.

Now imagine that Satoshi wants to send 4 gold to Alice.

Firstly, he will fetch the ColoredCoin out of the transaction.

var goldCoin = ColoredCoin.Find(sendGoldToSatoshi, color).FirstOrDefault();

Then, build a transaction like that:

builder = new TransactionBuilder();
var sendToBobAndAlice =
 builder

 .AddKeys(satoshi)

 .AddCoins(goldCoin)

 .SendAsset(alice, new AssetMoney(goldId, 4))
 .SetChange(satoshi)
 .BuildTransaction(true);

Except you will get the exception NotEnoughFundsException.

The reason is that the transaction is composed of 600 satoshi in input (the goldCoin), and 1200

satoshi in output. (one TxOut for sending assets to Alice, and one for sending back the change to

Satoshi)

This means that you are out of 600 satoshi.

You can fix the problem by adding the last Coin of 1 BTC in the init transaction that belongs to

satoshi.

74

Nicolas Dorier & Bill Strait

CC (ASA 3U)

var satoshiBtc = init.Outputs.AsCoins().Last();
builder = new TransactionBuilder();
var sendToAlice =
 builder

 .AddKeys(satoshi)

 .AddCoins(goldCoin, satoshiBtc)

 .SendAsset(alice, new AssetMoney(goldId, 4))
 .SetChange(satoshi)

 .BuildTransaction(true);
repo.Transactions.Put(sendToAlice);
color = ColoredTransaction.FetchColors(sendToAlice, repo);

Let’s see the transaction and its colored part:

Console.WriteLine(sendToAlice);
Console.WriteLine(color);

75

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 ….

 "in": [

 {

 "prev_out": {

 "hash": "46117f3ef44f2dfd87e0bc3f461f48fe9e2a3a2281c9b3802e339c5895fc325e",

 "n": 0

 },

 "scriptSig":

"304502210083424305549d4bb1632e2c67736383558f3e1d7fb30ce7b5a3d7b87a53cdb3940220687

ea53db678b467b98a83679dec43d27e89234ce802daf14ed059e7a09557e801

03e232cda91e719075a95ede4c36ea1419efbc145afd8896f36310b76b8020d4b1"

 },

 {

 "prev_out": {

 "hash": "aefa62270999baa0d57ddc7d2e1524dd3828e81a679adda810657581d7d6d0f6",

 "n": 2

 },

 "scriptSig":

"30440220364a30eb4c8a82cc2a79c54d0518b8ba0cf4e49c73a5bbd17fe1a5683a0dfa640220285e98f

3d336f1fa26fb318be545162d6a36ce1103c8f6c547320037cb1fb8e901

03e232cda91e719075a95ede4c36ea1419efbc145afd8896f36310b76b8020d4b1"

 }

],

 "out": [

 {

 "value": "0.00000000",

 "scriptPubKey": "OP_RETURN 4f41010002060400"

 },

 {

 "value": "0.00000600",

 "scriptPubKey": "OP_DUP OP_HASH160 5bb41cd29f4e838b4b0fdcd0b95447dcf32c489d

OP_EQUALVERIFY OP_CHECKSIG"

 },

 {

 "value": "0.00000600",

 "scriptPubKey": "OP_DUP OP_HASH160 469c5243cb08c82e78a8020360a07ddb193f2aa8

OP_EQUALVERIFY OP_CHECKSIG"

76

Nicolas Dorier & Bill Strait

CC (ASA 3U)

 },

 {

 "value": "0.99999400",

 "scriptPubKey": "OP_DUP OP_HASH160 5bb41cd29f4e838b4b0fdcd0b95447dcf32c489d

OP_EQUALVERIFY OP_CHECKSIG"

 }

]

}

Colored :

{

 "inputs": [

 {

 "index": 0,

 "asset": " ATEwaRSNeCgBjxjcur7JtfypFjqQgAtLJs ",

 "quantity": 10

 }

],

 "issuances": [],

 "transfers": [

 {

 "index": 1,

 "asset": " ATEwaRSNeCgBjxjcur7JtfypFjqQgAtLJs ",

 "quantity": 6

 },

 {

 "index": 2,

 "asset": " ATEwaRSNeCgBjxjcur7JtfypFjqQgAtLJs ",

 "quantity": 4

 }

],

 "destructions": []

}

We have finally made a unit test that emit and transfer some assets without any external

dependencies.

You can make your own IColoredTransactionRepository if you don’t want to depend on a third party

service.

77

Nicolas Dorier & Bill Strait

CC (ASA 3U)

You can find more complex scenarios in NBitcoin tests, and also one of my article “Build them all” in

codeproject. (like multi sig issuance and colored coin swaps)

5. Ricardian contracts

This part is a copy of an article I wrote on Coinprism’s blog. At the time of this writing, NBitcoin do

not have any code related to Ricardian Contracts.

a. What is a Ricardian Contract

Generally, an asset is any object representing rights which can be redeemed to an issuer on specific

conditions.

• A company’s share gives right to dividends,

• A bond gives right to the principal at maturity, coupons bears interest for every period,

• A voting token gives right to vote decisions about an entity. (Company, election)

• Some mix are possible : A share can also be a voting token for the company’s president

election,

Such rights are typically enumerated inside a Contract, and signed by the issuer. (and a trusted party

if needed, like a notary)

A Ricardian contract is a Contract which is cryptographically signed by the issuer, and can’t be

dissociated from the asset.

So the contract can’t be denied, tampered, and is provably signed by the issuer.

Such contract can be kept confidential between the issuer and the redeemer, or published.

Open Asset can already support all of that without changing the core protocol, and here is how.

b. Ricardian Contract inside Open Asset

Here is the formal definition of a ricardian contract:

1. A contract offered by an issuer to holders,

2. for a valuable right held by holders, and managed by the issuer,

3. easily readable by people (like a contract on paper),

4. readable by programs (parsable like a database),

5. digitally signed,

6. carries the keys and server information, and

7. allied with a unique and secure identifier.

An AssetId is specified by OpenAsset in such way :

AssetId = Hash160(ScriptPubKey)

Let’s make such ScriptPubKey a P2SH as:

ScriptPubKey = OP_HASH160 Hash(RedeemScript) OP_EQUAL

Where:

RedeemScript = HASH160(RicardianContract) OP_DROP IssuerScript

IssuerScript refer to a classical P2PKH for a simple issuer, multi sig if issuance need several consents.

(issuer + notary for example)

78

Nicolas Dorier & Bill Strait

CC (ASA 3U)

 It should be noted that from Bitcoin 0.10, IssuerScript is arbitrary and can be anything.

The “RicardianContract” can be arbitrary, and kept private. Whoever hold the contract can prove

that it applies to this Asset thanks to the hash in the ScriptPubKey.

But let’s make such RicardianContract discoverable and verifiable by wallet clients with the Asset

Definition Protocol.

 Let’s assume we are issuing a Voting token for candidate A,B or C.

Let’s add to the Open Asset Marker, the following asset definition url : u=http://issuer.com/contract

In the http://issuer.com/contract page, let’s create the following Asset Definition File :

{

 "IssuerScript" : IssuerScript,

 "name" : "MyAsset",

 "contract_url" : "http://issuer.com/readableContract",

 "contract_hash" : "DKDKocezifefiouOIUOIUOIufoiez980980",

 "Type" : "Vote",

 "Candidates" : ["A","B","C"],

 "Validity" : "10 jan 2015"

}

And now we can define the RicardianContract:

RicardianContract = AssetDefinitionFile

This terminate our RicardianContract implemented in OA.

c. Check list

A contract offered by an issuer to holders

The contract is hosted by the issuer, unalterable, and signed every time the Issuer issues a new asset,

for a valuable right held by holders, and managed by the issuer,

The right in this sample is a voting right for candidate A,B,C to redeem before 10 jan 2015.

easily readable by people (like a contract on paper),

The human readable contract is in the contract_url, but the JSON might be enough.

readable by programs (parsable like a database),

The details of the vote are inside the AssetDefinitionFile, in JSON format, the authenticity of the

contract is verified by software with the IssuerScript, and the hash in the ScriptPubKey.

digitally signed,

The ScriptPubKey is signed when the issuer issues the asset, thus, also the hash of the contract, and

by extension, the contract itself.

carries the keys and server information

IssuerScript is included in the contract

79

Nicolas Dorier & Bill Strait

CC (ASA 3U)

allied with a unique and secure identifier.

The AssetId is defined by Hash(ScriptPubKey) that can’t be changed and is unique.

d. What is it for?

Without Ricardian Contract, it is easy for a malicious issuer to modify or repudiate an Asset Definition

File.

 Ricardian Contract enforces non-repudiation, make a contract unalterable, so it facilitate arbitration

matter between redeemers and issuers.

 Also, since the Asset Definition File can’t be changed, it becomes possible to save it on redeemer’s

own storage, preventing rupture of access to the contract by a malicious issuer.

6. Liquid Democracy

a. Overview

This part is a purely conceptual exercise of one application of colored coins.

Let’s imagine a company where some decisions are taken by a board of investors after a vote.

• Some investors don’t know enough about a topic, so they would like to delegate decisions

about some subjects to someone else,

• There is potentially a huge number of investors,

• As the CEO, you want the ability to sell voting power for financing the company,

• As the CEO, you want the ability to cast a vote when you decide,

How Colored Coins can help to organize such a vote transparently?

But before beginning, let’s talk about some downside of voting on the Blockchain:

• Nobody knows the real identity of a voter,

• Miners could censor (even if it would be provable, and not in their interest),

• Even if nobody knows the real identity of the voter, behavioral analysis of a voter across

several vote might reveal his identity,

Whether these points are relevant or not is up to the vote organizer to decide.

Let’s take an overview of how we would implement that,

b. Issuing voting power

Everything start with the founder of the company (let’s call him Boss) wanting to sell “decision

power” in his company to some investors. The decision power can take the shape of a colored coin

that we will call for the sake of this exercise a “Power Coin”.

Let’s represent it in purple:

Let’s say that three persons are interested, Satoshi, Alice and Bob. (Yes, them again)

So Boss decides to sell each Power Coin at 0.1 BTC each.

80

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Let’s start funding some money to the powerCoin address, Satoshi, Alice and Bob.

var powerCoin = new Key();

var alice = new Key();

var bob = new Key();

var satoshi = new Key();

var init = new Transaction()

{

 Outputs =

 {

 new TxOut(Money.Coins(1.0m), powerCoin),

 new TxOut(Money.Coins(1.0m), alice),
 new TxOut(Money.Coins(1.0m), bob),

 new TxOut(Money.Coins(1.0m), satoshi),

 }

};

var repo = new NoSqlColoredTransactionRepository();

repo.Transactions.Put(init);

Imagine that Alice buy 2 Power coins, here is how to create such transaction.

var issuance = GetCoins(init,powerCoin)
 .Select(c=> new IssuanceCoin(c))
 .ToArray();

var builder = new TransactionBuilder();
var toAlice =
 builder

 .AddCoins(issuance)

 .AddKeys(powerCoin)

 .IssueAsset(alice, new AssetMoney(powerCoin, 2))
 .SetChange(powerCoin)

 .Then()

 .AddCoins(GetCoins(init, alice))

 .AddKeys(alice)

 .Send(alice, Money.Coins(0.2m))
 .SetChange(alice)

 .BuildTransaction(true);
repo.Transactions.Put(toAlice);

In summary, powerCoin issues 2 Power Coins to Alice and send the change to himself. Likewise, Alice

send 0.2 BTC to powerCoin and send the change to herself.

81

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Where GetCoins is

private IEnumerable<Coin> GetCoins(Transaction tx, Key owner)

{

 return tx.Outputs.AsCoins().Where(c => c.ScriptPubKey == owner.ScriptPubKey);
}

For some reason, Alice, might want to sell some of her voting power to Satoshi.

builder = new TransactionBuilder();
var toSatoshi =
 builder

 .AddCoins(ColoredCoin.Find(toAlice, repo))
 .AddCoins(GetCoins(init, alice))

 .AddKeys(alice)

 .SendAsset(satoshi, new AssetMoney(powerCoin, 1))
 .SetChange(alice)

 .Then()

 .AddCoins(GetCoins(init, satoshi))
 .AddKeys(satoshi)

 .Send(alice, Money.Coins(0.1m))
 .SetChange(satoshi)

 .BuildTransaction(true);
repo.Transactions.Put(toSatoshi);

You can note that I am double spending the coin of Alice from the init transaction.

Such thing would not be accepted on the Blockchain. However, we have not seen yet how to retrieve

unspent coins from the Blockchain easily, so let’s just imagine for the sake of the exercise that the

coin was not double spent.

Now that Alice and Satoshi have some voting power, let’s see how Boss can run a vote.

c. Running a vote

By consulting the Blockchain, Boss can at any time know ScriptPubKeys which owns Power Coins.

So he will send Voting Coins to these owner, proportionally to their voting power, in our case, 1

voting coin to Alice and 1 voting coin to Satoshi.

82

Nicolas Dorier & Bill Strait

CC (ASA 3U)

First, I need to create some funds for votingCoin.

var votingCoin = new Key();

var init2 = new Transaction()

{
 Outputs =

 {
 new TxOut(Money.Coins(1.0m), votingCoin),

 }
};

repo.Transactions.Put(init2);

Then, issue the voting coins.

issuance = GetCoins(init2, votingCoin).Select(c => new IssuanceCoin(c)).ToArray();
builder = new TransactionBuilder();
var toVoters =
 builder

 .AddCoins(issuance)

 .AddKeys(votingCoin)

 .IssueAsset(alice, new AssetMoney(votingCoin, 1))
 .IssueAsset(satoshi, new AssetMoney(votingCoin, 1))
 .SetChange(votingCoin)

 .BuildTransaction(true);
repo.Transactions.Put(toVoters);

d. Vote delegation

The problem is that the vote concern some financial aspect of the business, and Alice is mostly

concerned by the marketing aspect.

Her decision is to handout her voting coin to someone she trusts having a better judgment on

financial matter. She chooses to delegate her vote to Bob.

83

Nicolas Dorier & Bill Strait

CC (ASA 3U)

var aliceVotingCoin = ColoredCoin.Find(toVoters,repo)
 .Where(c=>c.ScriptPubKey == alice.ScriptPubKey)

 .ToArray();

builder = new TransactionBuilder();
var toBob =
 builder

 .AddCoins(aliceVotingCoin)
 .AddKeys(alice)

 .SendAsset(bob, new AssetMoney(votingCoin, 1))
 .BuildTransaction(true);
repo.Transactions.Put(toBob);

You can notice that there is no SetChange the reason is that the input colored coin is spent entirely,

so nothing is left to be returned.

e. Voting

Imagine that Satoshi is too busy and decide not to vote. Now Bob must express his decision.

The vote concerns whether the company should ask for a loan to the bank for investing into new

production machines.

Boss says on the company’s website:

Send your coins to 1HZwkjkeaoZfTSaJxDw6aKkxp45agDiEzN for yes and to

1F3sAm6ZtwLAUnj7d38pGFxtP3RVEvtsbV for no.

Bob decides that the company should take the loan:

builder = new TransactionBuilder();
var vote =
 builder

 .AddCoins(bobVotingCoin)

 .AddKeys(bob)

 .SendAsset(BitcoinAddress.Create("1HZwkjkeaoZfTSaJxDw6aKkxp45agDiEzN"),
 new AssetMoney(votingCoin, 1))
 .BuildTransaction(true);

Now Boss can compute the result of the vote and see 1-Yes 0-No, Yes win, so he takes the loan.

Every participants can also count the result by themselves.

f. Alternative: Use of Ricardian Contract

In the previous exercise, we have supposed that Boss announced the modalities of the vote out of

the Blockchain, on the company’s website.

This works great, but Bob need to know that the website exists.

84

Nicolas Dorier & Bill Strait

CC (ASA 3U)

Another solution is to publish the modalities of the vote directly on the Blockchain within an Asset

Definition File, so some software can automatically get it and present it to Bob.

The only piece of code that would have changed is during the issuance of the Voting Coins to voters.

issuance = GetCoins(init2, votingCoin).Select(c => new IssuanceCoin(c)).ToArray();
issuance[0].DefinitionUrl = new Uri("http://boss.com/vote01.json");
builder = new TransactionBuilder();
var toVoters =
 builder

 .AddCoins(issuance)

 .AddKeys(votingCoin)
 .IssueAsset(alice, new AssetMoney(votingCoin, 1))
 .IssueAsset(satoshi, new AssetMoney(votingCoin, 1))
 .SetChange(votingCoin)

 .BuildTransaction(true);
repo.Transactions.Put(toVoters);

In such case, Bob can see that during the issuance of his voting coin, an Asset Definition File was

published, which is nothing more than a JSON document whose schema is partially specified in Open

Asset.

The schema can be extended to have information about things like:

• Expiration of the vote

• Destination of the votes for each candidates

• Human friendly description of it

However, imagine that a hacker wants to cheat the vote. He can always modify the json document

(either man in the middle attack, physical access to boss.com, or access to Bob’s machine) so Bob is

tricked and send his vote to the wrong candidate.

Transforming the Asset Definition File into a Ricardian Contract by signing it would make any

modification immediately detectable by Bob’s software. (See Proof Of Authenticity in the Asset

Definition Protocol)

7. Proof of Burn and Reputation

The question is simple: in a P2P market were law enforcement is too expensive, how participants

might minimize the probability to get scammed?

OpenBaazar seems to be the first trying to use proof of burn as a reputation determinant.

There is several responses to that (escrow or notary/arbiter), but one that we will explore here is

called Proof Of Burn.

Imagine yourself in the middle age, and you live in a small village with several local merchants.

One day, a traveling merchant comes to your village and sell you some goods at an unbelievable low

price compared to local one.

However, traveling merchant are well known for scamming people with low quality product, because

losing reputation is a small price to pay for them compared to local merchants.

Local Merchant invested into a nice store, advertising and their reputation. Unhappy customers can

easily destroy them. But the traveling merchant, having no local store and only transient reputation

don’t have those incentives to not scam people.

85

Nicolas Dorier & Bill Strait

CC (ASA 3U)

On the internet, where the creation of an identity is so cheap, all merchants are potentially as the

travelling one from the middle age.

The solution of market providers was to gather the real identity of every participant in the market, so

law enforcement become possible.

If you get scammed on Amazon of Ebay, your bank will most likely refund you, because they have a

way to find the thief by contacting Amazon and Ebay.

In a purely P2P market using Bitcoin, we don’t have that. If you get scam, you lose money.

So how a buyer can trust the traveling merchant?

The response is: by checking how much he invested into his reputation.

So as a good intentioned seller, you want to inspire confidence to your customer. For that you will

destroy some of your wealth, and every customer will see. This is the definition of “investing into

your reputation”.

Imagine you burned 50 BTC for your reputation. And a customer want to buy 2 BTC of goods from

you. He has good reason to believe that you will not scam him, because you invested more into your

reputation that what you can get out of him by scamming.

It becomes not economically profitable for you to scam him.

The technical details will surely vary and change over time, but here is an example of Proof of Burn.

var alice = new Key();

//Giving some money to alice
var init = new Transaction()

{

 Outputs =

 {

 new TxOut(Money.Coins(1.0m), alice),

 }

};

var coin = init.Outputs.AsCoins().First();

//Burning the coin

var burn = new Transaction();

burn.Inputs.Add(new TxIn(coin.Outpoint)

{

 ScriptSig = coin.ScriptPubKey

}); //Spend the previous coin

var message = "Burnt for \"Alice Bakery\"";

var opReturn = TxNullDataTemplate

 .Instance

 .GenerateScriptPubKey(Encoding.UTF8.GetBytes(message));

burn.Outputs.Add(new TxOut(Money.Coins(1.0m), opReturn));

burn.Sign(alice, false);

Console.WriteLine(burn);

86

Nicolas Dorier & Bill Strait

CC (ASA 3U)

{

 ….

 "in": [

 {

 "prev_out": {

 "hash": "0767b76406dbaa95cc12d8196196a9e476c81dd328a07b30954d8de256aa1e9f",

 "n": 0

 },

 "scriptSig":

"304402202c6897714c69b3f794e730e94dd0110c4b15461e221324b5a78316f97c4dffab0220742c81

1d62e853dea433e97a4c0ca44e96a0358c9ef950387354fbc24b8964fb01

03fedc2f6458fef30c56cafd71c72a73a9ebfb2125299d8dc6447fdd12ee55a52c"

 }

],

 "out": [

 {

 "value": "1.00000000",

 "scriptPubKey": "OP_RETURN 4275726e7420666f722022416c6963652042616b65727922"

 }

]

}

Once in the Blockchain, this transaction is undeniable proof that Alice invested money for her bakery.

The Coin with ScriptPubKey OP_RETURN 4275726e7420666f722022416c6963652042616b65727922

do not have any way to be spent, so those coins are lost forever.

8. Proof of existence

87

Nicolas Dorier & Bill Strait

CC (ASA 3U)

VI. Security

1. The challenge of Bitcoin Development

2. How to prove a Coin exists in the Blockchain

3. How to prove a Colored Coin exists in the Blockchain

4. Breaking trust relationship with a third party API

5. Preventing Malleability attacks

6. Protecting your private keys

